
c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

TC 11 Briefing Papers

Achieve efficient position-heap-based

privacy-preserving substring-of-keyword query

over cloud

Fan Yin

a , b , Rongxing Lu

b , ∗, Yandong Zheng

b , Jun Shao

c , Xue Yang

d , e ,
Xiaohu Tang

a

a The Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu,
611756, China
b The Canadian Institute for Cybersecurity, Faculty of Computer Science, University of New Brunswick, Fredericton,
E3B 5A3 Canada
c School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
d The Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
e The PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, 518055, China

a r t i c l e i n f o

Article history:

Received 20 December 2020

Revised 7 July 2021

Accepted 3 August 2021

Available online 10 August 2021

Keywords:

Cloud computing

Outsourced encrypted data

Substring-of-keyword query

Position heap

Efficiency

a b s t r a c t

The cloud computing technique, which was initially used to mitigate the explosive growth

of data, has been required to take both data privacy and users’ query functionality into

consideration. Symmetric searchable encryption (SSE) is a popular solution to supporting

efficient keyword queries over encrypted data in the cloud. However, most of the exist-

ing SSE schemes focus on the exact keyword query and cannot work well when the user

only remembers the substring of a keyword, i.e., substring-of-keyword query. This paper

aims to investigate this issue by proposing an efficient and privacy-preserving substring-of-

keyword query scheme over cloud. First, we employ the position heap technique to design

a novel tree-based index to match substrings with corresponding keywords. Then based on

the tree-based index, we introduce our substring-of-keyword query scheme, which contains

two consecutive phases. The first phase queries the keywords that match a given substring,

and the second phase queries the files that match a keyword in which people are really in-

terested. In addition, detailed security analysis and experimental results demonstrate the

security and efficiency of our proposed scheme.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid development of information techniques, e.g., inter-
net of things, smart building, etc., has been promoting the ex-
∗ Corresponding author.
E-mail addresses: yinfan519@gmail.com (F. Yin), rlu1@unb.ca (R. Lu

yang.xue@sz.tsinghua.edu.cn (X. Yang), xhutang@swjtu.edu.cn (X. Tang

https://doi.org/10.1016/j.cose.2021.102432
0167-4048/© 2021 Elsevier Ltd. All rights reserved.
plosive growth of the data. According to IBM Marketing Cloud
study Cloud (2010) , more than 90% of data on the internet
has been created since 2016. In order to mitigate the local
storage and computing pressure, an increasing number of in-
dividuals and organizations tend to store and process their
), yzheng8@unb.ca (Y. Zheng), chn.junshao@gmail.com (J. Shao),
).

https://doi.org/10.1016/j.cose.2021.102432
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102432&domain=pdf
mailto:yinfan519@gmail.com
mailto:rlu1@unb.ca
mailto:yzheng8@unb.ca
mailto:chn.junshao@gmail.com
mailto:yang.xue@sz.tsinghua.edu.cn
mailto:xhutang@swjtu.edu.cn
https://doi.org/10.1016/j.cose.2021.102432

2 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

d
b
(
b
t
a
c
e
t
d
a
e
fi

q
t
c

2
S
k
w
w
k

m
e
q
i
t
G
d
k
c

U
b
s
t
C
L
a

t
t
a

a
q
p
l
s
n
k
k
t

Fig. 1 – System model under consideration.

m
i
i

s
s
p
c
S
S

2

I
m

2

I
s

ata in the cloud. However, since the cloud server may not
e fully trustable, those data with some sensitive information

e.g., electronic health records) have to be encrypted before
eing outsourced to the cloud Zheng et al. (2019) . Although

he data encryption technique can preserve data privacy, it
lso hides some critical information such that the cloud server
annot well support some users’ query functionality over the
ncrypted data, e.g., keyword query, which returns the collec-
ion of files containing some specific queried keywords. In or-
er to address the challenge, the concept of symmetric search-
ble encryption (SSE) Song et al. (2000) was introduced, which

nables the cloud server to search encrypted files in a very ef-
cient way.

Over the past years, in order to improve the keyword

uery efficiency, a variant of secure keyword-based index
echniques have been designed to match the keywords with

orresponding files, such as inverted index Cash et al. (2014,
013) ; Curtmola et al. (2006) , tree-based index Goh et al. (2003) ;
hao et al. (2019) ; Yin et al. (2019) , etc. Since the current
eyword-based index techniques are built with exact key-
ords, the existing SSE schemes can only support exact key-
ord query, i.e., the queried keyword must be exactly the same
eyword stored in cloud.

However, in practice, it is quite common that a user only re-
embers a fragment/substring of a keyword rather than the

xact keyword and expects to achieve a substring-of-keyword

uery, i.e., the user first queries some candidate keywords contain-
ng a substring to help him/her complete the queried keyword and
hen queries files that match the queried keyword. Considering the
oogle website example, it automatically returns a list of can-
idate keywords after users enter a fragment of the queried

eyword to the search bar. This feature can help users effi-
iently enter the correct queried keyword before a real search.
nfortunately, most SSE schemes with the current keyword-
ased index techniques cannot be directly used to support the
ubstring-of-keyword query because their indexes do not con-
ain the substring information. Although some SSE schemes
hase and Shen (2015) ; Hahn et al. (2018) ; Leontiadis and

i (2018) ; Mainardi et al. (2019) focus on the substring query
nd can be used to implement substring-of-keyword query,
hey cannot achieve high efficiency in terms of the compu-
ational cost of query processing and the overhead of storage
t the same time.

To address the above challenge, in this paper, we consider
 fine-grained SSE scheme supporting substring-of-keyword

uery, which consists of two consecutive phases. The first
hase, called the substring-to-keyword query, is to query a

ist of candidate keywords containing a given specific sub-
tring, and then the user chooses the keyword that he/she
eeds from candidate keywords. The second phase, called the
eyword-to-file query, is to query files that match the chosen

eyword. Specifically, the main contributions of this paper are
hree-fold:

• First, based on the position heap technique, we design

a storage-efficient index (i.e., modified position heap) to
match substrings with corresponding keywords. We then

use pseudo-random function and symmetric encryption

scheme to encrypt this index, which can not only well sup-
port the substring-to-keyword query, but also preserve the
privacy of queried substring as well as the plaintext of the
keywords.

• Second, we proposed an efficient and privacy-preserving
substring-of-keyword query scheme, which consists of a
substring-to-keyword query and a keyword-to-file query.
This scheme is suitable for critical applications in practice
such as Google search.

• Finally, we analyze the security of our proposed scheme
and conduct extensive experiments to evaluate its perfor-
mance. The results show that our proposed scheme can

achieve efficient queries in terms of low computational
cost and communication overhead.

The remainder of the paper is organized as follows. We for-
alize the system model, security model, and design goals

n Section 2 . Then, we introduce some preliminaries includ-
ng the position heap technique Ehrenfeucht et al. (2011) ,
ymmetric encryption scheme, and the security notion of
ubstring-to-keyword query in Section 3 . After that, we
resent our proposed scheme in Section 4 , followed by se-
urity analyses and performance evaluation in Section 5 and

ection 6 , respectively. Some related works are discussed in

ection 7 . Finally, we draw our conclusions in Section 8 .

. Models and design goals

n this section, we formalize the system model, security
odel, and identify our design goals.

.1. System model

n our system model, we consider two entities, namely a cloud

erver and a data user, as shown in Fig. 1 .

• Data user : The data user has a collection of files F =

{ f 1 , f 2 , . . . , f n } and each file f j ∈ F consists of a set of
keywords from a dictionary W = { ω 1 , ω 2 , . . . , ω d } . Due to
the limited storage space and computational capability, the
data user intends to outsource the file collection F and its
indices, i.e., I W

– index for substring-to-keyword query, I F –
index for keyword-to-file query, to the cloud server. Then,
the data user launches a substring-of-keyword query with

the cloud server. The substring-of-keyword query consists
of two consecutive phases: a substring-to-keyword query
and a keyword-to-file query. To be more specific, the data
user first submits a substring-to-keyword query request
Q ω to the cloud server and retrieves a set of keywords
W

′ ⊆ W containing the given substring. Then, the data user
chooses the queried keyword from W

′ and uses a queried

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 3

Fig. 2 – An example of building position heap P(t) for string
t = bbabbbaaba . The solid edges in P(t) reflect the insertion

path for suffix t[1 : 10] .

keyword to submit a keyword-to-file query request Q f to
retrieve a set of files F

′ ⊆ F containing the queried key-
word.

• Cloud server : The cloud server is considered to be powerful
in storage space and computational capability. The cloud
server is assumed to efficiently store file collection F and
its indices { I W

, I F } in local. In addition, the cloud server will
process two types of query requests: substring-to-keyword
query request Q ω and keyword-to-file query request Q f . For
the former, the cloud server conducts search operation in
the index I W

and responds a set of keywords W

′ ⊆ W ; For
the latter, the cloud server conducts search operation in
the index I F and responds a set of files F

′ ⊆ F .

2.2. Security model

In our security model, the data user is considered as trusted,
while the cloud server is assumed as honest-but-curious , which
means that the cloud server will i) honestly execute the query
processing, return the query results without tampering it, and
ii) curiously infer as much sensitive information as possible
from the available data. The sensitive information could in-
clude the files F , the indices { I W

, I F } , the substring-to-keyword
query request Q ω , and the keyword-to-file query request Q f .
The formal simulated-based definition for this security model
is described in Subsection 3.3 .

2.3. Design goals

In this work, our design goal is to achieve an efficient
and privacy-preserving substring-of-keyword query scheme.
In particular, the following three requirements should be
achieved.

• Privacy preservation . In the proposed scheme, all the data
obtained by the cloud server, i.e., {F , I W

, I F , Q ω , Q f } , should
be privacy-preserving during the outsourcing, query, and
update phases. Formally, the proposed scheme needs to
satisfy security definition 1 .

• Efficiency . In order to achieve the above privacy require-
ment, additional computational cost and storage overhead
will inevitably be incurred. Therefore, in this work, we also
aim to reduce the computational cost and communication
overhead to be linear with the length of the queried sub-
string.

• Dynamics . Update operations should be efficiently and se-
curely supported after the initial outsourcing.

3. Preliminary

In this section, we recall some preliminaries including the
position heap technique Ehrenfeucht et al. (2011) , the sym-
metric key encryption scheme, and the security definition of
substring-to-keyword query, which will be served as the basis
of our proposed scheme.

3.1. The (original) position heap technique

Intuitively speaking, the (original) position heap P(t) is a trie
built from all the suffixes of t and can be used to achieve ef-
ficient substring search for t. To construct the position heap
P(t) from a string t = c 1 c 2 . . . c m

, P(t) is initialized as a root
node and a set of suffixes t[i : m] = c i . . . c m

(i ∈ [m, . . . , 1])
are chosen and inserted to the P(t) . To do this, for each suf-
fix t[i : m] (i ∈ [m, . . . , 1]) , its longest prefix t[i : j] (i ≤
j ≤ m) that is already represented by a path in P(t) is found
and a new leaf child is added to the last node of this path.
The new leaf child is labeled with i and its edge is labeled
with t[j + 1] (see Fig. 2). Compared to other data structures
to achieve substring search, such as suffix tree Chase and
Shen (2015) and suffix array Leontiadis and Li (2018) , the posi-
tion heap Ehrenfeucht et al. (2011) can achieve high efficiency
in both storage and query time.

In the following, we formally describe the PHBuild and
PHSearch algorithms of the position heap. Note that, we con-
sider each node in the position heap stores two attributes: edge
and pos , where the former stores the label of the node’s edge
and the latter stores the label of the node.

3.1.1. PHBuild algorithm

Given a string t = c 1 c 2 . . . c m

, the PHBuild (i.e., Algorithm 1)
first initializes position heap P(t) as a root node. Then, it vis-
its the t from the right to left and inserts each suffix t[i :
m] (i ∈ [m, . . . , 1]) to the position heap P(t) . In particular, for
each suffix t[i : m] , the algorithm first finds its longest prefix
t[i : j] (i ≤ j ≤ m) that is already represented by a path in
P(t) (lines 4–10). Assume the last node of this path is N. Then
the algorithm appends a new leaf child N

′ to the N, where
N

′ .edge = c j+1 and N

′ .pos = i (lines 11–12). Fig. 2 depicts an ex-
ample to build such a position heap for a string t = bbabbbaaba .
During the insertion for suffix t[1 : 10] , this algorithm finds its
longest prefix t[1 : 2] represented by the solid path and ap-
pends a new leaf child N

′ to the last node of the solid path,
where N

′ .edge = a and N

′ .pos = 1 .

4 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

Algorithm 1 Build a position heap P(t) for the string t =

c 1 c 2 . . . c m

.

1: initialize position heap P(t) as a root node R , where

R.edge = Null and R.pos = Nul l ;
2: for each i in [m, m − 1 , . . . , 1] do

3: N = R ;
4: for each j in [i, i + 1 , . . . , m] do

5: find the child N′ of N, where N′ .edge = c j ;
6: if N′ does exist then

7: N = N′
8: else

9: j = j − 1 ;
10: break;
11: insert a new child node N′ to the N;
12: N ′ .ed ge = c j+1 , N′ .pos = i ;

13: return P(t) ;

3
G

A

A
s

1
1

1
1
1

1
1
1

1

a
i

a
f

P

t

{

i

r

a

3

A
d
(
r

r

r

w
p
a
p

W
a

3

I
C
r
i

t

e
r
p
t

T
L

t
u
n
s
l

f

.1.2. PHSearch algorithm

iven a substring s and a position heap P(t) , the PHSearch (i.e.,
lgorithm 2) is supposed to find all the positions in t that

lgorithm 2 Search substring s in a position heap P(t) , where
 = s 1 s 2 . . . s l and t = c 1 c 2 . . . c m

.

1: initial empty sets L 1 and L 2 ;
2: let N be the root node of the P(t) ;
3: for each i in [1 , 2 , . . . , l] do

4: find the child N′ of N, where N′ .edge = s i ;
5: if N′ does exist then

6: if i = l then

7: L 2 .ad d (N ′ .pos) ;
8: for each descendant X of N′ do

9: L 2 .ad d (X.pos) ;
0: else

1: L 1 .ad d (N ′ .pos) ;
2: N = N′ ;
3: else

4: break;
5: for each i in L 1 do

6: if c i c i +1 . . . c i + l−1 is not equal to s 1 s 2 . . . s l then

7: L 1 .remove (i) ;
8: return L 1 ∪ L 2 ;

re occurrences of s . The time complexity of this algorithm

s O (| s | 2 + d s) , where | s | is the length of the queried substring
nd d s is the number of matching positions. The details are as
ollows:

• The algorithm first finds the longest prefix s ′ of s that can

be represented by a path in P(t) and then denotes this path

as the search path. Next, the algorithm lets L 1 be the set
of pos stored in the intermediate nodes along the search

path and L 2 be the set of pos stored in the descendants of
the last node of the search path (lines 3–14). In particular,
if s ′ � = s , the pos stored in the last node of the search path
is included in L 1 . Otherwise, it is included in L 2 .

• After completing the previous step, elements in L 2 must be
matching positions but elements in L 1 may or may not be
matching positions. Therefore, the algorithm reviews each
position i ∈ L 1 in the string t to filter out unmatching posi-
tions and remove them from the L 1 . Finally, this algorithm

returns L 1 ∪ L 2 (lines 15–17).

Take an example with Fig. 2 . Given a substring s = bb, the
HSearch algorithm finds its longest prefix bb corresponding
o the solid path. In this way, L 1 and L 2 are equal to { 9 } and
 5 , 1 , 4 } . Then, this algorithm reviews the string t and confirms
 = 9 ∈ L 1 is not an occurrence of s . Therefore, the position 9 is
emoved from the L 1 , and L 1 is an empty set now. Finally, this
lgorithm returns all the pos in L 1 ∪ L 2 = { 5 , 1 , 4 } .

.2. Symmetric key encryption scheme

 symmetric key encryption scheme (SKE) Katz and Lin-
ell (2014) is a set of three polynomial-time algorithms

Gen, Enc, Dec) such that Gen takes a security parameter λ and

eturns a secret key k ; Enc takes a key k and a message m , then
eturns a ciphertext c ; Dec takes a key k and a ciphertext c , then
eturns m if k was the key under which c was produced. In this
ork, we consider a SKE is indistinguishable under chosen

laintext attack (IND-CPA) Katz and Lindell (2014) , which guar-
ntees the ciphertext does not leak any information about the
laintext even an adversary can query an encryption oracle.
e note that common private-key encryption schemes such

s AES in counter mode satisfy this definition.

.3. Security definition of substring-to-keyword query

n this subsection, we follow the security definition in

urtmola et al. (2006) to formalize the simulated-based secu-
ity definition of substring-to-keyword query scheme by us-
ng the following two experiments: Real A , C (λ) and I d eal A , S (λ) . In
he former, the adversary A , who represents the cloud server,
xecutes the proposed scheme with a challenger C that rep-
esents the data user. In the latter, A also executes the pro-
osed scheme with a simulator S who simulates the output of
he challenger C through the leakage of the proposed scheme.
he leakage is parameterized by a leakage function collection

 = (L O , L Q , L U) , which describes the information leaked to
he adversary A in the outsourcing phase, query phase, and

pdate phase respectively. If any polynomial adversary A can-
ot distinguish the outputs between the challenger C and the
imulator S, then we can say there is no other information

eaked to the adversary A , i.e., the cloud server, except the in-
ormation that can be inferred from the L . More formally,

• Real A , C (1 λ) → b ∈ { 0 , 1 } : Given a keyword dictionary W cho-
sen by the adversary A , the challenger C outputs encrypted

index I W

by following the outsourcing phase of the pro-
posed scheme. Then, A can adaptively send a polynomial
number of query requests (or update requests) to the C,
who outputs corresponding encrypted query requests (or
encrypted update requests). Eventually, A returns a bit b as
the output of this experiment.

• I d eal A , S (1 λ) → b ∈ { 0 , 1 } : Given the leakage function L O ,
the simulator outputs simulated encrypted index I W

. Then,
for each query request (or update request), the adversary
A sends its leakage function L Q (or L U) to the simulator
S, who generates the corresponding simulated encrypted

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 5

t

t

query request (or encrypted update request). Eventually, A
returns a bit b as the output of this experiment.

Definition 1. A substring-to-keyword query scheme is L -
secure against adaptive attacks if for any probabilistic poly-
nomial time adversary A , there exists an efficient simulator S
such that

| Pr [Real A , C (λ) → 1] − Pr [I d eal A , S, L (λ) → 1] | ≤ negl(λ) .

4. Our proposed scheme

In this section, we will present our substring-of-keyword
query scheme. Before delving into the details, we first intro-
duce a modified position heap for keyword dictionaries, which
is a basic building block of our proposed scheme.

4.1. Modified position heap for keyword dictionaries

In order to process substring-to-keyword query efficiently, we
first design a modified position heap to index all the keywords
in a dictionary, which consists of two algorithms: i) MPHBuild
algorithm; ii) MPHSearch algorithm.

4.1.1. MPHBuild algorithm

Given a dictionary W = { ω 1 , ω 2 , . . . , ω d } , the MPHBuild algorithm
first transforms the dictionary W = { ω 1 , ω 2 , . . . , ω d } to a string
 W

= ω 1 || # || ω 2 || # . . . # || ω d , where || denotes the concatenation
operation and # denotes a separate character that does not ap-
pear in any ω ∈ W . In the rest of this paper, we call this string
 W

dictionary string . Then, this algorithm follows PHBuild algo-
rithm (i.e., Algorithm 1) to build an original position heap for
this dictionary string t W

and further modifies it to a modified
position heap P(t W

) as follows: i) For each node N, replace its
N.pos with the corresponding keyword in t W

, called N.keyword.
ii) At the same time, remove useless paths, whose edges start-
ing with # . Fig. 3 depicts an example of building the modified
position heap P(t W

) for a dictionary W = { ω 1 , ω 2 , ω 3 } .

4.1.2. MPHSearch algorithm

Given a substring s and a modified position heap P(t W

) ,
the MPHSearch algorithm follows the PHSearch algorithm (i.e.,
Algorithm 2) to return all the keywords in W that include s .
There are two differences between PHSearch and MPHSearch : i)
PHSearch returns a set of positions, but MPHSearch returns a set
of keywords because all the N.pos stored in P(t W

) is replaced
by the corresponding N.keyword. ii) PHSearch reviews each posi-
tion i ∈ L 1 in the string t to filter out unmatching positions, but
MPHSearch directly returns all the keywords in L 1 . The reason
is that the cloud server, who performs MPHSearch algorithm,
is not allowed to access to the dictionary string t W

to filter
out unmatching keywords in L 1 . Therefore, the cloud server
returns all the keywords in L 1 and leaves the filter operation
to the data user. Fortunately, the computational cost of the fil-
ter operation, i.e., O (| s | 2) , is acceptable because the length of
queried substring, i.e., | s | , is relatively small in practice.
4.2. Description of our proposed scheme

In this subsection, we will describe our proposed privacy-
preserving substring-of-keyword query scheme, which con-
sists of five phases: i) System Initialization; ii) Data Outsourc-
ing; iii) Substring-of-keyword Query; iv) Update (Insertion);
and v) Update (Deletion).

4.2.1. System initialization

Given a security parameter λ, the data user first initializes a
secure pseudo-random function (PRF) H k 1 : { 0 , 1 } ∗ −→ { 0 , 1 } γ ,
where k 1 is a λ-bit random key. Then, the data user initializes
an IND-CPA secure SKE Π = (Gen, Enc, Dec) and generates a se-
cret key k 2 = Π.Gen (1 λ) .

4.2.2. Data outsourcing
Assume the data user has a file collection F = { f 1 , f 2 , . . . , f n } ,
where each f j ∈ F includes a set of keywords W j ⊆ W. The
data user generates secure indices { I W

, I F } and a set of en-
crypted files in the following steps:

Step 1: In order to support efficient substring-to-keyword
query, the data user uses the MPHBuild algorithm, described
in Section 4.1 , to build a modified position heap P(t W

) for the
dictionary W.

Step 2: For privacy, the data user encrypts P(t W

) to a secure
index I W

as follows:

• For each node N in the modified position heap (except the
root), the data user uses Π.Enc k 2 to encrypt its N.keyword.

• For each node N in the modified position heap (except
the root), the data user concatenates each edge label, i.e.,
N.edge , along the path from the root to this node, and cal-
culates the PRF output of the concatenation through H k 1 .

Considering the example in Fig. 4 , the I W

is encrypted from
Fig. 3 (d). For each node, its keywords are encrypted through
Π.Enc k 2 , and its edge label are transformed to a PRF output
through H k 1 .

Step 3: In order to support efficient keyword-to-file
query, the data user utilizes the inverted index proposed in
Cash et al. (2014) to implement the index I F . This inverted in-
dex is implemented by a hash table, and each < key, value >
pair in it is the form of < ω , id > , where ω is a keyword and id
is a file identifier.

Step 4: Finally, the data user encrypts each file f j ∈ F
through Π.Enc k 2 and sends these encrypted files to the cloud
server with secure indices { I W

, I F } .

4.2.3. Substring-of-keyword query
Given a substring s = s 1 s 2 . . . s l , the data user launches
a substring-of-keyword query with the cloud server. The
substring-of-keyword query consists of two consecutive
phases: a substring-to-keyword query and a keyword-to-file
query, which are described in the following steps:

Step 1: First, the data user generates a substring-to-
keyword query request Q ω and submits it to the cloud server.
To be more specific, the Q ω = { Q 1 , Q 2 , . . . , Q l } consists of l PRF
outputs, where

Q i = H k 1 (s 1 || . . . || s i) , 1 ≤ i ≤ l (1)

6 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

Fig. 3 – An example of building a modified position heap for a dictionary W. (a) W = { ω 1 , ω 2 , ω 3 } is a dictionary, where
ω 1 = bbab, ω 2 = bba , and ω 3 = aba . (b) To get dictionary string t W

, concatenate all the keywords in W with character # . (c)
Build an original position heap for t W

. (d) For each node N, replace its N.pos with the corresponding keyword, called

N.keyword. At the same time, remove useless paths from the P(t W

) .

Fig. 4 – An example of secure index I W

, which is generated from the modified position heap P(t W

) in Fig. 3 (d).

Fig. 5 – An example of substring-to-keyword query, where I W

is the secure index for dictionary string t W

= bbab# bba # aba
and the given substring is s = ab.

s
S
d

d
g
e

A
t

r

r
a

u
w
t
t
o

Step 2: After receiving the query request Q ω , the cloud

erver follows the MPHSearch algorithm, described in

ection 4.1 , to search encrypted keywords in secure in-
ex I W

and returns elements in L 1 ∪ L 2 to the data user. Fig. 5
epicts an example of substring-to-keyword query, where the
iven substring is s = ab. In this example, the data user gen-
rates Q ω = { H k 1 (a) , H k 1 (a || b) } and sends it to the cloud server.
fter receiving the Q ω , the cloud server performs MPHSearch

o get L 1 = { Π.Enc k 2 (ω 3) } , L 2 = { Π.Enc k 2 (ω 3) , Π.Enc k 2 (ω 1) } and
eturns L 1 ∪ L 2 to the data user. Note that, since Π.Enc is a
andomized encryption, these encrypted keywords in L 1 ∪ L 2
re indistinguishable for the cloud server.

Step 3: After receiving the encrypted keywords, the data
ser first decrypts them and filters out the unmatching key-
ords. Then, the data user chooses a queried keyword from

he matching keywords and submits a keyword-to-file query
o the cloud server. Since our paper just focuses on the design

f substring-to-keyword query, we directly utilize the scheme

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 7

Fig. 6 – An example of inserting keyword ω = ba to I W

, where I W

is the secure index for dictionary string t W

= bbab# bba # aba .

U

U

U

U

proposed in Cash et al. (2014) to implement our keyword-to-
file query. According to the scheme in Cash et al. (2014) , the
data user can submit efficient and privacy-preserving single
keyword queries to the cloud server based on the index I F .

4.2.4. Update (insertion)
In the proposed scheme, there are two types of insertion oper-
ations: insert keywords to the index I W

and insert files to the
index I F . Since Cash et al. Cash et al. (2014) has proposed a
privacy-preserving insertion algorithm to deal with the inser-
tion for the index I F , we just need to consider the insertion for
the index I W

.
Given a keyword ω = c 1 c 2 . . . c z , the data user is supposed

to insert it to the index I W

. Intuitively, assume the dictionary
is W = { ω 1 , ω 2 , . . . , ω d } and its corresponding dictionary string
is t W

= ω 1 || # || ω 2 || # . . . # || ω d . The insertion operation will update
the index I W

to a new version, called I W

′ , where its correspond-
ing t W

′ = ω|| # || t W

. The details are described as follows:
Step 1: The data user chooses z random values r 1 , r 2 , . . . , r z

to generate an update (insertion) request U ω = { Π.Enc k 2 (ω) ,
 (c 1 c 2 . . . c z) , U (c 2 . . . c z) , . . . , U (c z) } and submits it to the cloud

server. Specifically, each U(c i . . . c z) (1 ≤ i ≤ z) in U ω consists of
(z − i + 3) PRF outputs, i.e., { U i , U i +1 , . . . , U z +2 } , where

 j =

⎧ ⎪ ⎨

⎪ ⎩

H k 1 (c i || . . . || c j) , i f i ≤ j ≤ z
H k 1 (c i || . . . || c j || #) , i f j = z + 1
H k 1 (r i) , i f j = z + 2

(2)

Fig. 6 depicts an example of the insertion operation for key-
word ω = ba . In this example, the U ω = { Π.Enc k 2 (ω) , U(ba) ,
 (a) } , where U (ba) = { H k 1 (b) , H k 1 (b|| a) , H k 1 (b|| a || #) , H k 1 (r 1) } and
(a) = { H k 1 (a) , H k 1 (a || #) , H k 1 (r 2) } .

Step 2: After receiving the update (insertion) request U ω , for
each U(c i . . . c z) (1 ≤ i ≤ z) in it, the cloud server first finds its
longest prefix U i U i +1 . . . U h (1 ≤ h < z + 2) that is already rep-
resented by a path in I W

and denotes this path as insertion
path. Then the cloud server appends a new leaf child N

′ to
the last node of the insertion path, where N

′ .edge = U h +1 and
N

′ .keyword = Π.Enc k 2 (ω) . Note that, in practice, the h can not
equal to z + 2 because U z +2 = H k 1 (r i) is a random number. As
shown in Fig. 6 , the solid edges reflect the insertion paths for
the U(ba) and U(a) .

4.2.5. Update (deletion)
In the proposed scheme, there are two types of deletion opera-
tions: delete substrings from the index I F and delete keywords
from the index I W

. Since Cash et al. Cash et al. (2014) has pro-
posed a privacy-preserving deletion algorithm for the index
I F , we just need to consider the deletion for the index I W

.
We implement this deletion operation by maintaining a

revocation list I W r , which is also an encrypted modified po-
sition heap, in the cloud server. Specifically, in the data out-
sourcing phase, the data user builds a modified position heap
I W r for an empty dictionary W r = {} and sends the I W r to
the cloud server with { I W

, I F } . Then, to delete a keyword from
the cloud server, the data user just follows the update (in-
sertion) method in 4.2.4 to insert the keyword to I W r . During
a substring-to-keyword query, after receiveing a substring-to-
keyword query request, the cloud server performs search op-
erations over I W

and I W r separately, and returns two result sets
to the data user. Finally, the data user decrypts the two result
sets and calculates the difference between them to obtain the
correct keywords.

Correctness. The correctness of our proposed is quite
straightforward. The only issue is the collision among the
edges’ PRF outputs in I W

. Since the domain size of PRF H k 1 is
2 γ , assuming that the number of nodes in I W

is m , the probabil-
ity of collision is O (

[m

2

]
/ 2 γ) = O (m

2 / 2 γ) . So we need to choose
γ = λ + 2 log(m) such that O (m

2 / 2 γ) = O (1 / 2 λ) is negligible over
the security parameter λ.

5. Security analysis

In this paper, the proposed substring-of-keyword query
scheme consists of two query schemes: a substring-to-
keyword query scheme and a keyword-to-file query scheme.
Since the security analysis in Cash et al. (2014) has shown
that the keyword-to-file query scheme is secure, we mainly fo-
cus on the security analysis of the substring-to-keyword query
scheme in this section.

8 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

5

T
f
s

D
c

r
o

s
P
S
s

D

w

a
v
t

D
i
(
t
c

d

s

m

5

W
q
{

t
t
a
n
q
l
f

T
Π

t

P
b

t
C
q

6

I
s
.1. Leakage function collection

he leakage function collection L consists of three leakage
unctions: L O , L Q , and L U . Before defining them, we first give
ome definitions for the leakage of this scheme.

efinition 2. (Query Path Pattern) Given the index I W

, which

ontains a set of encrypted nodes { n 1 , n 2 , . . . , n m

} , and a query
equest Q ω , the Query Path Pat t ern reveals a set of identifiers
f nodes in I W

that are reached by the Q ω , i.e., nodes in the
earch path. Note that, in the proposed scheme the Query
 ath P attern includes the Access Pattern (i.e., search result) and

earch Pat t ern (i.e., which queries have the same queried sub-
tring).

efinition 3. (Insertion Path Pattern) Given the index I W

,
hich contains a set of encrypted nodes { n 1 , n 2 , . . . , n m

} , and
n update (insertion) request U ω , the Insertion P ath P attern re-
eals the set of identifiers of nodes in I W

that are reached by
he U ω , i.e., nodes in the insertion path.

efinition 4. (Deletion Path Pattern) The deletion method is
mplemented by a revocation list, which means the update
deletion) request is exactly the same as the update (inser-
ion) request. Therefore, given the revocation list I W r , which

ontains a set of encrypted nodes { n 1 , n 2 , . . . , n m

} , and an up-
ate (deletion) request U ω , the Del et ion Pat h Pat t ern reveals the
et of identifiers of nodes in I W r that are reached by the U ω .

Now we define the leakage functions to capture the infor-
ation leakage in different phases.

• Outsourcing Phase: Given the index I W

, which contains a
set of encrypted nodes { n 1 , n 2 , . . . , n m

} . The leakage L O con-
sists of the following information:
• m : the size of the dictionary string t W

.
• Γ = { (id 1 , C id 1) , . . . , (id m

, C id m) } : the structure of index I W

,
where id i (1 ≤ i ≤ m) denotes the identifiers of encrypted

node n i and C id i
(1 ≤ i ≤ m) denotes all the identifiers of

id i ’s children.
• Query Phase: Given the index I W

and a substring-to-
keyword query request Q ω , the leakage L Q is Query Path
Pat t ern .

• Update Phase: Given the index I W

, revocation list I W r , and

an update request U ω , if update operation is insertion /
deletion, the leakage L U is Insertion Path Pattern / Deletion
P ath P attern .

.2. Security proof

e now prove the security of the substring-to-keyword

uery scheme based on the leakage function collection L =

L O , L Q , L U } . Intuitively, we first define a simulator S based on
he leakage function collection L and then analyze the indis-
inguishability between the outputs of the S in the ideal world

nd the challenger C (i.e., the data user) in the real world. Fi-
ally, we conclude that the proposed substring-to-keyword

uery scheme does not reveal any information beyond the
eakage function collection L to the server. The details are as
ollows.
heorem 1. If the H is a secure pseudo-random function (PRF) and
is an IND-CPA secure symmetric key encryption scheme (SKE),

hen our proposed scheme is L -adaptively-secure.

roof. Based on the leakage function collection L , we can

uild a simulator S as follows:

• Data Outsourcing: given the leakage function L O = { m, Γ } ,
the simulator S is supposed to generate a simulated I W

(i.e.,
an encrypted modified position heap). Specifically, the sim-
ulator S first generates m empty nodes and identifies each

node a unique identifier from { id 1 , . . . , id m

} . Then the sim-
ulator S constructs these nodes to a tree (i.e., I W

) based on

Γ , which means the I W

has the same tree structure as I W

.
Next, for each node in the I W

, the simulator S chooses a
random number H from the domain of H as the PRF output
of its edge and a random number Π.Enc from the domain of
Π.Enc as its encrypted keyword. Since the output of H and

Π.Enc are pseudo-random, the adversary A cannot distin-
guish between the I W

in the ideal world and the I W

in the
real world.

• Substring-to-keyword Query: given the leakage function

L Q for a substring-to-keyword query request Q ω , the sim-
ulator S is supposed to generate a simulated encrypted

substring-to-keyword query request Q ω . Note that, in this
phase, the simulator S not only has L Q but also L O and I W

from the data outsourcing phase. Therefore, the simulator
S can follow the Query Path Pat t ern in L Q to find the search

path in I W

and output all the H stored in the search path

as the Q ω . Since the output of H is pseudo-random, the ad-
versary A cannot distinguish between the elements in Q ω

and Q ω . At the same time, after receiving the Q ω , the adver-
sary A can use it to find matching encrypted keywords in

I W

. Since these matching encrypted keywords in I W

is en-
crypted through Π.Enc , the adversary A cannot distinguish

them from the matching encrypted keywords in I W

, which

means the adversary A cannot distinguish between Q ω in

the ideal world and Q ω in the real world.
• Update: given the leakage function L U for an update (in-

sertion / deletion) request U ω , the simulator S is supposed

to generate a simulated encrypted update request U ω . Note
that, in this phase, the simulator S not only has L U but also
L O and I W

/ I W r from the data outsourcing phase. There-
fore, the simulator S can follow the Insertion P ath P attern /
Del et ion Pat h Pat t ern in L U to find the insertion paths in I W

/ I W r and output all the H stored in these insertion paths
as the U ω . Since the output of H is pseudo-random, the ad-
versary A cannot distinguish between U ω in the ideal world

and U ω in the real world.

In summary, as the adversary A cannot distinguish be-
ween the outputs from the simulator S and the challenger
, we can conclude that our proposed substring-to-keyword

uery scheme is L -adaptively-secure. �

. Performance evaluation

n this section, we evaluate the performance of our proposed

cheme from both theoretical and experimental perspectives.

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 9

Table 1 – Comparison between ours and existing schemes.

Scheme Index Space Query Time Dynamism

Chase and Shen (2015) O (m) O (| s | + d s) static
Leontiadis and Li (2018) O (m) O (| s | + d s) static
Hahn et al. (2018) O (m) O (| s | · d kg) dynamic

Moataz et al. (2018) O (m) O (m) static
Mainardi et al. (2019) O (| �| · m) O (| s | + d s) static
Our solution O (m) O (| s | + d s) dynamic

m is the size of dataset, | s | is the size of queried substring s , d s is the number of matching positions for s , d kg is the average number of matching
positions for a k-gram of s , and | �| is the number of distinct characters in dataset.

Fig. 7 – The length distribution of a total of 40,205 distinct
keywords in W.

6.1. Theoretical analysis

We perform a theoretical comparison of our proposed
substring-to-keyword scheme with existing schemes (cf.
Table 1) from three aspects: index space, query time, and
dynamism. From Table 1 , we can see that the schemes in
Chase and Shen (2015) and Leontiadis and Li (2018) have the
same index space (i.e., O (m)) and query time (i.e, O (| s | + d s)).
However, in practice, Chase and Shen (2015) will consume
more index space than Leontiadis and Li (2018) due to its suf-
fix tree index, which just stores position data in leaf nodes
and does not utilize the space of inner nodes effectively. In
fact, the number of nodes in the suffix tree can be up to 2 m ,
where m is the size of the dataset. In contrast, Leontiadis and
Li (2018) utilizes Burrows-Wheeler Transformation (BWT) to
build a suffix array index to support substring query, which
has better storage-efficiency than the suffix tree at the cost of
worse query-efficiency.

Later, based on the scheme in Leontiadis and Li (2018) ,
Mainardi et al. (2019) uses Private Information Retrieval
(PIR) technique to protect the access pattern, which causes
high index space and query time. In addition to suffix
tree and suffix array, there are other auxiliary data struc-
tures Hahn et al. (2018) ; Moataz et al. (2018) can be used to
support substring query. However, their query time is unac-
ceptable in practice.

Compared with these existing schemes, our proposed
substring-to-keyword scheme can achieve high storage-
efficiency and query-efficiency at the same time. In specific,
our scheme can achieve O (m) complexity for index space
and O (| s | + d s) complexity for query time, which are the
same as Chase and Shen (2015) ; Leontiadis and Li (2018) and
better than Hahn et al. (2018) ; Mainardi et al. (2019) ;
Moataz et al. (2018) . In addition, our proposed scheme can
support dynamic datasets, which cannot be supported by
Chase and Shen (2015) ; Leontiadis and Li (2018) . Further,
due to the use of position heap technique, which is storage-
efficient than the suffix tree and query-efficient than the suf-
fix array, our proposed scheme consumes less index space
than Chase and Shen (2015) and less query time than
Leontiadis and Li (2018) in practice, which will be shown in
the next subsection.

6.2. Experimental analysis

In this subsection, we evaluate the computational cost
and storage overhead of the proposed substring-to-keyword
scheme in terms of three phases: local data outsourcing,
substring-to-keyword query, and update. Specifically, we im-
plemented the proposed scheme in C++ (our code is open
source Yin (2019)) and conducted experiments on a 64-bit
machine with an Intel Core i5-8400 CPU at 2.8GHZ and 2GB
RAM, running CentOS 6.6. We utilized the OpenSSL library
for the entailed cryptographic operations, where the H and
Π are instantiated using HMAC-SHA-256 and AES-512-CBC
in the OpenSSL library, respectively. Note that, we imple-
mented the data user and the cloud server on the same
machine, which means there is no network delay between
them. The underlying dataset (i.e., the dictionary W) in our
experiment was extracted from 29,378 articles from Wikivoy-
age wikivoyage (0000) , and it contains 40,205 distinct keywords
in total. The length distribution of the keywords in W can be
found in Fig. 7 .

In order to show the efficiency of our proposed substring-
to-keyword scheme, we compare it with the schemes in
Chase and Shen (2015) ; Leontiadis and Li (2018) . Note that,
in our experiment, we also use the schemes in Chase and
Shen (2015) ; Leontiadis and Li (2018) to support substring
query on the dictionary string t W

, which is transformed from
the dictionary W by the method described in Fig. 3 (a-b).

6.2.1. Data outsourcing
In this part, we consider the storage overhead and computa-
tional cost of data outsourcing phase.

10 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

Fig. 8 – The storage overhead of the data outsourcing
versus the size of dictionary d.

Fig. 9 – The data outsourcing runtime versus the size of
dictionary d.

a
a
a
a
a
v
C
h
o

6
I
d
t
i
b
i

c
t

Fig. 10 – Substring-to-keyword query runtime versus the
size of dictionary d, where the number of matching
keywords d s is 5.

Fig. 11 – Substring-to-keyword query runtime versus the
number of matching keywords d s , where d = 40000 .

o
w

t
l

s
i

u
s
t
L

p
b

L

6
I
p
S

p

In general, given a dictionary string, our solution generates
n encrypted position heap, Chase and Shen (2015) generates
n encrypted suffix tree, and Leontiadis and Li (2018) gener-
tes an encrypted suffix array as the index, respectively. Fig. 8
nd Fig. 9 (the y-axis is log scale) depict the storage overhead

nd the runtime versus the size of dictionary (i.e., d), where d
aries from 5000 to 40,000 keywords. The figures show that
hase and Shen (2015) consumes much more storage over-
ead and computation cost than Leontiadis and Li (2018) and

ur solution in data outsourcing phase.

.2.2. Substring-to-keyword query
n this part, we randomly choose queried substrings from the
ictionary W and calculate their average queried time. Since
he computational cost of substring-to-keyword query is lim-
ted by two factors: the size of dictionary (i.e., d) and the num-
er of matching keywords (i.e., d s), we analyze them separately

n the following.
Fig. 10 (the y-axis is log scale) depicts the computational

ost of the substring-to-keyword query versus the size of dic-
ionary (i.e., d). This figure shows that the computational cost
f our solution and Chase and Shen (2015) are not affected by d
hen the number of matching keywords d s is fixed. However,

he computational cost of Leontiadis and Li (2018) increases
inear with d even if d s is fixed.

Fig. 11 (the y-axis is log scale) plots the runtime of the
ubstring-to-keyword query versus the number of match-
ng keywords d s , in which d is fixed to 40000. From this fig-
re, we can see that the computational cost of these three
chemes are not affected too much by d s . Meanwhile, our solu-
ion and Chase and Shen (2015) are significantly quicker than

eontiadis and Li (2018) . For example, when d s = 20 , the com-
utational cost of our solution and Chase and Shen (2015) are
oth about 0.004 ms, which is just about 1 / 60 compared to
eontiadis and Li (2018) .

.2.3. Update
n this part, we consider the update (insertion / deletion)
hase. Since there is no secure update method in Chase and

hen (2015) ; Leontiadis and Li (2018) , we only test the update
erformance of our solution. Since the deletion operation in

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 11

Fig. 12 – Insertion runtime versus the length of inserted

keyword, where the size of original dictionary d is 5000.

our solution is the same as the insertion operation, we just
evaluate the computational cost of the insertion operation.

Fig. 12 plots the computational cost of the insertion versus
the length of inserted keyword, in which the size of original
dictionary d is fixed to 5000. From this figure, we can see that
the computational cost of our solution increases linearly with
the length of inserted keyword.

7. Related work

A searchable encryption scheme can be realized with optimal
security via powerful cryptographic tools, such as Fully Ho-
momorphic Encryption (FHE) Gentry (2009, 2010) and Obliv-
ious Random Access Memory (ORAM) Goldreich and Ostro-
vsky (1996) ; Ostrovsky (1990) . However, these tools are extraor-
dinarily impractical. Another set of works utilize property-
preserving encryption (PPE) Bellare et al. (2007) ; Boldyreva
et al. (2009, 2011) ; Yang et al. (2018) to achieve search-
able encryption, which encrypts messages in a way that in-
evitably leaks certain properties of the underlying message.
For balancing the leakage and efficiency, many studies fo-
cus on Searchable Symmetric Encryption (SSE). Song et al.
Song et al. (2000) first used the symmetric encryption to fa-
cilitate keyword query over the encrypted data. Then, Curt-
mola et al. Curtmola et al. (2006) gave a formal definition of
SSE, and proposed an efficient SSE scheme. However, their
scheme cannot support update(insertion/deletion) operation.
Later, Kamara et al. Kamara et al. (2012) proposed the first
dynamic SSE scheme, which used a deletion array and a ho-
momorphic encrypted pointer technique to securely update
files. Unfortunately, due to the use of fully homomorphic en-
cryption, the update efficiency is very low. In a more recent
paper Cash et al. (2014) , Cash et al. described a simple dy-
namic inverted index based on Curtmola et al. (2006) , which
utilizes the data unlinkability of hash table to achieve se-
cure insertion. Meanwhile, to prevent the file-injection attacks
Zhang et al. (2016) , many works Bost (2016) ; Kim et al. (2017) ;
Zuo et al. (2018, 2019) focused on the forward security, which
ensures that newly updated keywords cannot be related to
previous queried results.
Nevertheless, these above works only can support the ex-
act keyword query. If the queried keyword does not match a
preset keyword, the query will fail. Fortunately, fuzzy query
can deal with this problem as it can tolerate minor typos
and formatting inconsistencies. Li et al. Li et al. (2010) first
proposed a fuzzy query scheme, which used an edit dis-
tance with a wildcard-based technique to construct fuzzy
keyword sets. For instance, the set of CAT with 1 edit dis-
tance is { CAT, ∗CAT, ∗AT, C ∗ AT, C ∗ T, CA ∗ T, CA ∗, CAT ∗} . Then,
Kuzu et al. Kuzu et al. (2012) used LSH (Local Sensitive Hash)
and Bloom filter to construct a similarity query scheme. Be-
cause an honest-but-curious server may only return a frac-
tion of the results, Wang et al. Wang et al. (2013) proposed a
verifiable fuzzy query scheme that not only supports fuzzy
query service, but also provides proof to verify whether the
server returns all the queried results. However, these fuzzy
query schemes only support single fuzzy keyword query and
address problems of minor typos and formatting inconsis-
tency, which can not be directly used to achieve substring-of-
keyword query.

In Chase and Shen (2015) , Melissa et al. designed a SSE
scheme based on the suffix tree to support substring query. Al-
though this scheme can be used to implement the substring-
of-keyword query and allows for substring query in O (| s | + d s)
time, its storage cost O (m) has a big constant factor. The
reason is that suffix tree only stores position data in leaf
nodes and does not utilize the space of inner nodes effec-
tively. This leads the number of nodes in suffix tree can
be up to 2 m , where m is the size of the dataset. In order
to reduce the storage cost as much as possible, Leontiadis
et al. Leontiadis and Li (2018) leveraged Burrows Wheeler
Transform (BWT) to build an auxiliary data structure called
suffix array, which can achieve storage cost O (m) with a lower
constant factor. However, its query time is relatively large.
Later, Mainardi et al. Mainardi et al. (2019) optimizes the query
algorithm in Leontiadis and Li (2018) to achieve O (| s | + d s) at
the cost of higher index space, i.e., O (| �| · m) , where | �| is the
number of distinct characters in the dictionary. Although au-
thors in this article considered datasets with small | �| (e.g.,
DNA dataset), the | �| can be large in practice. In addition to
suffix tree and suffix array, there are other auxiliary data struc-
tures can be used to support substring query. In 2018, Flo-
rian et al. Hahn et al. (2018) designed an index based on k-
grams. When a user needs to perform a substring query, the
cloud performs a conjunctive keyword query for all the k-
grams of the queried substring. However, its query time is rel-
atively large due to the computational cost of intersection op-
erations in the conjunctive keyword query. In the same year,
Tarik et al. Moataz et al. (2018) proposed a new substring query
scheme based on the idea of letter orthogonalization, which
allows testing of string membership by performing efficient
inner product. Again, the disadvantage of this scheme comes
its O (m) query time.

8. Conclusion

In this paper, we have proposed an efficient and privacy-
preserving substring-of-keyword query scheme over cloud.
Specifically, based on the position heap technique, we first

12 c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2

d
q

A
s
t
s
m
p
i
a
i

w

a

D

T
n
p

A

T

R
(
o

R

B

B

B

B

C

C

C

C

C

E

G

G

G

G

H

K

K

K

K

L

L

M

M

O

S

S

W

w
Y

esigned a tree-based index to support substring-to-keyword

uery and then applied a PRF and a SKE to protect its privacy.
fter that, we proposed a novel substring-of-keyword query
cheme, which contains two consecutive phases: a substring-
o-keyword query that queries the keywords matching a given

ubstring, and a keyword-to-file query that queries the files
atching a keyword that the user is really interested. The pro-

osed scheme is very suitable for many critical applications
n practice such as Google search. Detailed security analysis
nd performance evaluation show that our proposed scheme
s indeed privacy-preserving and efficient. In our future work,
e will take more security properties into consideration, e.g.,
chieving forward and backward security.

eclaration of Competing Interest

he authors declare that they have no known competing fi-
ancial interests or personal relationships that could have ap-
eared to influence the work reported in this paper.

cknowledgment

his work is supported in part by NSERC Discovery Grants (no.
gpin 04009), Natural Science Foundation of Zhejiang Province

grant no. LZ18F020003), National Natural Science Foundation

f China (grant no. U1709217), and NSFC Grant (61871331).

E F E R E N C E S

ellare M , Boldyreva A , O’Neill A . Deterministic and efficiently
searchable encryption. In: Advances in Cryptology - CRYPTO

2007, 27th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19–23, 2007, Proceedings; 2007.
p. 535–52 .

oldyreva A , Chenette N , Lee Y , O’Neill A . Order-preserving
symmetric encryption. In: Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on

the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26–30, 2009. Proceedings; 2009.
p. 224–41 .

oldyreva A , Chenette N , O’Neill A . Order-preserving encryption

revisited: Improved security analysis and alternative
solutions. In: Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14–18, 2011. Proceedings; 2011. p. 578–95 .

ost R .
∑

o ϕo ς : Forward secure searchable encryption. In:
Weippl ER, Katzenbeisser S, Kruegel C, Myers AC, Halevi S,
editors. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria,
October 24–28, 2016. ACM; 2016. p. 1143–54 .

ash D , Jaeger J , Jarecki S , Jutla CS , Krawczyk H , Rosu M-C ,
Steiner M . Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation. In: NDSS.
Citeseer; 2014. p. 23–6 .

ash D , Jarecki S , Jutla CS , Krawczyk H , Rosu M , Steiner M .
Highly-scalable searchable symmetric encryption with

support for boolean queries. In: Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18–22, 2013. Proceedings, Part I; 2013.
p. 353–73 .
hase M , Shen E . Substring-searchable symmetric encryption.
Proceedings on Privacy Enhancing Technologies
2015;2015(2):263–81 .

loud, I. M., 2010. key marketing trends for 2017 and ideas for
exceeding customer expectations.

urtmola R , Garay JA , Kamara S , Ostrovsky R . Searchable
symmetric encryption: improved definitions and efficient
constructions. In: Proceedings of the 13th ACM Conference on

Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, Ioctober 30 - November 3, 2006; 2006.
p. 79–88 .

hrenfeucht A , McConnell RM , Osheim N , Woo S . Position heaps:
a simple and dynamic text indexing data structure. J. Discrete
Algorithms 2011;9(1):100–21 .

entry C . Fully homomorphic encryption using ideal lattices. In:
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31, - June 2,
2009; 2009. p. 169–78 .

entry C . Computing arbitrary functions of encrypted data.
Commun. ACM 2010;53(3):97–105 .

oh E-J , et al . Secure indexes.. IACR Cryptology ePrint Archive
2003;2003:216 .

oldreich O , Ostrovsky R . Software protection and simulation on

oblivious rams. J. ACM 1996;43(3):431–73 .
ahn F , Loza N , Kerschbaum F . Practical and secure substring

search. In: Proceedings of the 2018 International Conference
on Management of Data; 2018. p. 163–76 .

amara S , Papamanthou C , Roeder T . Dynamic searchable
symmetric encryption. In: Proceedings of the 2012 ACM

conference on Computer and communications security. ACM;
2012. p. 965–76 .

atz J , Lindell Y . Introduction to modern cryptography. CRC

press; 2014 .
im KS , Kim M , Lee D , Park JH , Kim W-H . Forward secure dynamic

searchable symmetric encryption with efficient updates. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM; 2017. p. 1449–63 .

uzu M , Islam MS , Kantarcioglu M . Efficient similarity search over
encrypted data. In: 2012 IEEE 28th International Conference
on Data Engineering. IEEE; 2012. p. 1156–67 .

eontiadis I , Li M . Storage efficient substring searchable
symmetric encryption. In: Proceedings of the 6th International
Workshop on Security in Cloud Computing; 2018. p. 3–13 .

i J , Wang Q , Wang C , Cao N , Ren K , Lou W . Fuzzy keyword search

over encrypted data in cloud computing. In: 2010 Proceedings
IEEE INFOCOM. IEEE; 2010. p. 1–5 .

ainardi N , Barenghi A , Pelosi G . Privacy preserving substring
search protocol with polylogarithmic communication cost. In:
Proceedings of the 35th Annual Computer Security
Applications Conference; 2019. p. 297–312 .

oataz T , Ray I , Ray I , Shikfa A , Cuppens F , Cuppens N . Substring
search over encrypted data. J. Comput. Secur. 2018;26(1):1–30 .

strovsky R . Efficient computation on oblivious rams. In:
Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13–17, 1990, Baltimore, Maryland, USA;
1990. p. 514–23 .

hao J , Lu R , Guan Y , Wei G . Achieve efficient and verifiable
conjunctive and fuzzy queries over encrypted data in cloud.
IEEE Trans. Serv. Comput. 2019 .

ong DX , Wagner DA , Perrig A . Practical techniques for searches
on encrypted data. In: 2000 IEEE Symposium on Security and

Privacy, Berkeley, California, USA, May 14–17, 2000; 2000.
p. 44–55 .

ang J , Ma H , Tang Q , Li J , Zhu H , Ma S , Chen X . Efficient verifiable
fuzzy keyword search over encrypted data in cloud

computing.. Comput. Sci. Inf. Syst. 2013;10(2):667–84 .
ikivoyage,. https://www.wikivoyage.org/ Accessed Nov. 2019.
ang W , Xu Y , Nie Y , Shen Y , Huang L . TRQED: secure and fast

tree-based private range queries over encrypted cloud. In:

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0027
https://www.wikivoyage.org/
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029

c o m p u t e r s & s e c u r i t y 1 1 0 (2 0 2 1) 1 0 2 4 3 2 13

Database Systems for Advanced Applications - 23rd

International Conference, DASFAA 2018, Gold Coast, QLD,
Australia, May 21–24, 2018, Proceedings, Part II; 2018. p. 130–46 .

Yin, F., 2019. An implementation of our proposed scheme.
Yin F , Zheng Y , Lu R , Tang X . Achieving efficient and

privacy-preserving multi-keyword conjunctive query over
cloud. IEEE Access 2019;7:165862–72 .

Zhang Y , Katz J , Papamanthou C . All your queries are belong to
us: The power of file-injection attacks on searchable
encryption. In: 25th USENIX Security Symposium, USENIX

Security 16, Austin, TX, USA, August 10–12, 2016; 2016.
p. 707–20 .

Zheng Y , Lu R , Li B , Shao J , Yang H , Choo KR . Efficient
privacy-preserving data merging and skyline computation

over multi-source encrypted data. Inf. Sci. 2019;498:91–105 .
Zuo C , Sun S-F , Liu JK , Shao J , Pieprzyk J . Dynamic searchable

symmetric encryption schemes supporting range queries with
forward (and backward) security. In: European Symposium on

Research in Computer Security. Springer; 2018. p. 228–46 .
Zuo C , Sun S-F , Liu JK , Shao J , Pieprzyk J . Dynamic searchable

symmetric encryption with forward and stronger backward

privacy. In: European Symposium on Research in Computer
Security. Springer; 2019. p. 283–303 .

Fan Yin received the B.S. degree in informa-
tion security from the Southwest Jiaotong
University, Chengdu, China, in 2012. He is
currently working toward the Ph.D. degree in
information and communication engineer-
ing, Southwest Jiaotong University, and also
a visiting student at Faculty of Computer Sci-
ence, University of New Brunswick, Canada.
His research interests include searchable en-
cryption, privacy-preserving and security for
cloud security and network security.

Rongxing Lu is currently an associate profes-
sor at the Faculty of Computer Science (FCS),
University of New Brunswick (UNB), Canada.
He is a Fellow of IEEE. His research inter-
ests include applied cryptography, privacy
enhancing technologies, and IoT-Big Data se-
curity and privacy. He has published exten-
sively in his areas of expertise, and was the
recipient of 9 best (student) paper awards
from some reputable journals and confer-
ences. Currently, Dr. Lu serves as the Vice-
Chair (Conferences) of IEEE ComSoc CIS-TC
(Communications and Information Security

Technical Committee). Dr. Lu is the Winner of 2016-17 Excellence
in Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree
from the Department of Computer Science,
Beihang University, China, in 2017 and She
is currently pursuing her Ph.D. degree in the
Faculty of Computer Science, University of
New Brunswick, Canada. Her research inter-
est includes cloud computing security, big
data privacy and applied privacy.
Jun Shao received the Ph.D. degree from
the Department of Computer Science and
Engineering, Shanghai Jiao Tong University,
Shanghai, China, in 2008. He was a Post-
doctoral Fellow with the School of Informa-
tion Sciences and Technology, Pennsylvania
State University, State College, PA, USA, from
2008 to 2010. He is currently a Professor
with the School of Computer Science and In-
formation Engineering, Zhejiang Gongshang
University, Hangzhou, China. His current re-
search interests include network security
and applied cryptography.

Xue Yang received the Ph.D. degree in In-
formation and Communication Engineer-
ing from Southwest Jiaotong University,
Chengdu, China, in 2019. She was a visit-
ing student at the Faculty of Computer Sci-
ence, University of New Brunswick, Canada,
from 2017 to 2018. She is currently a Postdoc-
toral Fellow in the Tsinghua Shenzhen Inter-
national Graduate School, Tsinghua Univer-
sity, China. Her research interests include big
data security and privacy, applied cryptogra-
phy and federated learning.

Xiaohu Tang received the B.S. degree in
applied mathematics from Northwest Poly-
technic University, Xi’an, China, in 1992, the
M.S. degree in applied mathematics from
Sichuan University, Chengdu, China, in 1995,
and the Ph.D. degree in electronic engi-
neering from Southwest Jiaotong University,
Chengdu, in 2001. From 2003 to 2004, he was
a Research Associate with the Department
of Electrical and Electronic Engineering, The
Hong Kong University of Science and Tech-
nology. From 2007 to 2008, he was a Visit-
ing Professor with the University of Ulm, Ger-

many. Since 2001, he has been with the School of Information Sci-
ence and Technology, Southwest Jiaotong University, where he is
currently a Professor. His research interests include coding theory,
network security, distributed storage, and information processing
for big data. Dr. Tang was a recipient of the National excellent Doc-
toral Dissertation Award in 2003 (China), the Humboldt Research
Fellowship in 2007 (Germany), and the Outstanding Young Scien-
tist Award by NSFC in 2013 (China). He served as an Associate Ed-
itor for several journals, including the IEEE TRANSACTIONS ON
INFORMATION THEORY and IEICE Transactions on Fundamentals,
and served for a number of technical program committees of con-
ferences.

http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00256-X/sbref0035

	Achieve efficient position-heap-based privacy-preserving substring-of-keyword query over cloud
	1 Introduction
	2 Models and design goals
	2.1 System model
	2.2 Security model
	2.3 Design goals

	3 Preliminary
	3.1 The (original) position heap technique
	3.1.1 algorithm
	3.1.2 algorithm

	3.2 Symmetric key encryption scheme
	3.3 Security definition of substring-to-keyword query

	4 Our proposed scheme
	4.1 Modified position heap for keyword dictionaries
	4.1.1 algorithm
	4.1.2 algorithm

	4.2 Description of our proposed scheme
	4.2.1 System initialization
	4.2.2 Data outsourcing
	4.2.3 Substring-of-keyword query
	4.2.4 Update (insertion)
	4.2.5 Update (deletion)

	5 Security analysis
	5.1 Leakage function collection
	5.2 Security proof

	6 Performance evaluation
	6.1 Theoretical analysis
	6.2 Experimental analysis
	6.2.1 Data outsourcing
	6.2.2 Substring-to-keyword query
	6.2.3 Update

	7 Related work
	8 Conclusion
	Declaration of Competing Interest
	Acknowledgment

	Reference

