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a b s t r a c t 

The cloud computing technique, which was initially used to mitigate the explosive growth 

of data, has been required to take both data privacy and users’ query functionality into 

consideration. Symmetric searchable encryption (SSE) is a popular solution to supporting 

efficient keyword queries over encrypted data in the cloud. However, most of the exist- 

ing SSE schemes focus on the exact keyword query and cannot work well when the user 

only remembers the substring of a keyword, i.e., substring-of-keyword query. This paper 

aims to investigate this issue by proposing an efficient and privacy-preserving substring-of- 

keyword query scheme over cloud. First, we employ the position heap technique to design 

a novel tree-based index to match substrings with corresponding keywords. Then based on 

the tree-based index, we introduce our substring-of-keyword query scheme, which contains 

two consecutive phases. The first phase queries the keywords that match a given substring, 

and the second phase queries the files that match a keyword in which people are really in- 

terested. In addition, detailed security analysis and experimental results demonstrate the 

security and efficiency of our proposed scheme. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

The rapid development of information techniques, e.g., inter-
net of things, smart building, etc., has been promoting the ex-
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Fig. 1 – System model under consideration. 
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ata in the cloud. However, since the cloud server may not 
e fully trustable, those data with some sensitive information 

e.g., electronic health records) have to be encrypted before 
eing outsourced to the cloud Zheng et al. (2019) . Although 

he data encryption technique can preserve data privacy, it 
lso hides some critical information such that the cloud server 
annot well support some users’ query functionality over the 
ncrypted data, e.g., keyword query, which returns the collec- 
ion of files containing some specific queried keywords. In or- 
er to address the challenge, the concept of symmetric search- 
ble encryption (SSE) Song et al. (2000) was introduced, which 

nables the cloud server to search encrypted files in a very ef- 
cient way. 

Over the past years, in order to improve the keyword 

uery efficiency, a variant of secure keyword-based index 
echniques have been designed to match the keywords with 

orresponding files, such as inverted index Cash et al. (2014,
013) ; Curtmola et al. (2006) , tree-based index Goh et al. (2003) ; 
hao et al. (2019) ; Yin et al. (2019) , etc. Since the current 
eyword-based index techniques are built with exact key- 
ords, the existing SSE schemes can only support exact key- 
ord query, i.e., the queried keyword must be exactly the same 
eyword stored in cloud. 

However, in practice, it is quite common that a user only re- 
embers a fragment/substring of a keyword rather than the 

xact keyword and expects to achieve a substring-of-keyword 

uery, i.e., the user first queries some candidate keywords contain- 
ng a substring to help him/her complete the queried keyword and 
hen queries files that match the queried keyword. Considering the 
oogle website example, it automatically returns a list of can- 
idate keywords after users enter a fragment of the queried 

eyword to the search bar. This feature can help users effi- 
iently enter the correct queried keyword before a real search.
nfortunately, most SSE schemes with the current keyword- 
ased index techniques cannot be directly used to support the 
ubstring-of-keyword query because their indexes do not con- 
ain the substring information. Although some SSE schemes 
hase and Shen (2015) ; Hahn et al. (2018) ; Leontiadis and 

i (2018) ; Mainardi et al. (2019) focus on the substring query 
nd can be used to implement substring-of-keyword query,
hey cannot achieve high efficiency in terms of the compu- 
ational cost of query processing and the overhead of storage 
t the same time. 

To address the above challenge, in this paper, we consider 
 fine-grained SSE scheme supporting substring-of-keyword 

uery, which consists of two consecutive phases. The first 
hase, called the substring-to-keyword query, is to query a 

ist of candidate keywords containing a given specific sub- 
tring, and then the user chooses the keyword that he/she 
eeds from candidate keywords. The second phase, called the 
eyword-to-file query, is to query files that match the chosen 

eyword. Specifically, the main contributions of this paper are 
hree-fold: 

• First, based on the position heap technique, we design 

a storage-efficient index (i.e., modified position heap) to 
match substrings with corresponding keywords. We then 

use pseudo-random function and symmetric encryption 

scheme to encrypt this index, which can not only well sup- 
port the substring-to-keyword query, but also preserve the 
privacy of queried substring as well as the plaintext of the 
keywords. 

• Second, we proposed an efficient and privacy-preserving 
substring-of-keyword query scheme, which consists of a 
substring-to-keyword query and a keyword-to-file query.
This scheme is suitable for critical applications in practice 
such as Google search. 

• Finally, we analyze the security of our proposed scheme 
and conduct extensive experiments to evaluate its perfor- 
mance. The results show that our proposed scheme can 

achieve efficient queries in terms of low computational 
cost and communication overhead. 

The remainder of the paper is organized as follows. We for- 
alize the system model, security model, and design goals 

n Section 2 . Then, we introduce some preliminaries includ- 
ng the position heap technique Ehrenfeucht et al. (2011) ,
ymmetric encryption scheme, and the security notion of 
ubstring-to-keyword query in Section 3 . After that, we 
resent our proposed scheme in Section 4 , followed by se- 
urity analyses and performance evaluation in Section 5 and 

ection 6 , respectively. Some related works are discussed in 

ection 7 . Finally, we draw our conclusions in Section 8 . 

. Models and design goals 

n this section, we formalize the system model, security 
odel, and identify our design goals. 

.1. System model 

n our system model, we consider two entities, namely a cloud 

erver and a data user, as shown in Fig. 1 . 

• Data user : The data user has a collection of files F = 

{ f 1 , f 2 , . . . , f n } and each file f j ∈ F consists of a set of
keywords from a dictionary W = { ω 1 , ω 2 , . . . , ω d } . Due to
the limited storage space and computational capability, the 
data user intends to outsource the file collection F and its 
indices, i.e., I W 

– index for substring-to-keyword query, I F –
index for keyword-to-file query, to the cloud server. Then,
the data user launches a substring-of-keyword query with 

the cloud server. The substring-of-keyword query consists 
of two consecutive phases: a substring-to-keyword query 
and a keyword-to-file query. To be more specific, the data 
user first submits a substring-to-keyword query request 
Q ω to the cloud server and retrieves a set of keywords 
W 

′ ⊆ W containing the given substring. Then, the data user 
chooses the queried keyword from W 

′ and uses a queried 
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Fig. 2 – An example of building position heap P(t ) for string 
t = bbabbbaaba . The solid edges in P(t ) reflect the insertion 

path for suffix t[1 : 10] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

keyword to submit a keyword-to-file query request Q f to
retrieve a set of files F 

′ ⊆ F containing the queried key-
word. 

• Cloud server : The cloud server is considered to be powerful
in storage space and computational capability. The cloud
server is assumed to efficiently store file collection F and
its indices { I W 

, I F } in local. In addition, the cloud server will
process two types of query requests: substring-to-keyword
query request Q ω and keyword-to-file query request Q f . For
the former, the cloud server conducts search operation in
the index I W 

and responds a set of keywords W 

′ ⊆ W ; For
the latter, the cloud server conducts search operation in
the index I F and responds a set of files F 

′ ⊆ F . 

2.2. Security model 

In our security model, the data user is considered as trusted,
while the cloud server is assumed as honest-but-curious , which
means that the cloud server will i) honestly execute the query
processing, return the query results without tampering it, and
ii) curiously infer as much sensitive information as possible
from the available data. The sensitive information could in-
clude the files F , the indices { I W 

, I F } , the substring-to-keyword
query request Q ω , and the keyword-to-file query request Q f .
The formal simulated-based definition for this security model
is described in Subsection 3.3 . 

2.3. Design goals 

In this work, our design goal is to achieve an efficient
and privacy-preserving substring-of-keyword query scheme.
In particular, the following three requirements should be
achieved. 

• Privacy preservation . In the proposed scheme, all the data
obtained by the cloud server, i.e., {F , I W 

, I F , Q ω , Q f } , should
be privacy-preserving during the outsourcing, query, and
update phases. Formally, the proposed scheme needs to
satisfy security definition 1 . 

• Efficiency . In order to achieve the above privacy require-
ment, additional computational cost and storage overhead
will inevitably be incurred. Therefore, in this work, we also
aim to reduce the computational cost and communication
overhead to be linear with the length of the queried sub-
string. 

• Dynamics . Update operations should be efficiently and se-
curely supported after the initial outsourcing. 

3. Preliminary 

In this section, we recall some preliminaries including the
position heap technique Ehrenfeucht et al. (2011) , the sym-
metric key encryption scheme, and the security definition of
substring-to-keyword query, which will be served as the basis
of our proposed scheme. 

3.1. The (original) position heap technique 

Intuitively speaking, the (original) position heap P(t) is a trie
built from all the suffixes of t and can be used to achieve ef-
ficient substring search for t. To construct the position heap
P(t) from a string t = c 1 c 2 . . . c m 

, P(t) is initialized as a root
node and a set of suffixes t[ i : m ] = c i . . . c m 

(i ∈ [ m, . . . , 1])
are chosen and inserted to the P(t) . To do this, for each suf-
fix t[ i : m ] (i ∈ [ m, . . . , 1]) , its longest prefix t[ i : j] (i ≤
j ≤ m ) that is already represented by a path in P(t) is found
and a new leaf child is added to the last node of this path.
The new leaf child is labeled with i and its edge is labeled
with t[ j + 1] (see Fig. 2 ). Compared to other data structures
to achieve substring search, such as suffix tree Chase and
Shen (2015) and suffix array Leontiadis and Li (2018) , the posi-
tion heap Ehrenfeucht et al. (2011) can achieve high efficiency
in both storage and query time. 

In the following, we formally describe the PHBuild and
PHSearch algorithms of the position heap. Note that, we con-
sider each node in the position heap stores two attributes: edge
and pos , where the former stores the label of the node’s edge
and the latter stores the label of the node. 

3.1.1. PHBuild algorithm 

Given a string t = c 1 c 2 . . . c m 

, the PHBuild (i.e., Algorithm 1 )
first initializes position heap P(t) as a root node. Then, it vis-
its the t from the right to left and inserts each suffix t[ i :
m ] (i ∈ [ m, . . . , 1]) to the position heap P(t) . In particular, for
each suffix t[ i : m ] , the algorithm first finds its longest prefix
t[ i : j] (i ≤ j ≤ m ) that is already represented by a path in
P(t) (lines 4–10). Assume the last node of this path is N. Then
the algorithm appends a new leaf child N 

′ to the N, where
N 

′ .edge = c j+1 and N 

′ .pos = i (lines 11–12). Fig. 2 depicts an ex-
ample to build such a position heap for a string t = bbabbbaaba .
During the insertion for suffix t[1 : 10] , this algorithm finds its
longest prefix t[1 : 2] represented by the solid path and ap-
pends a new leaf child N 

′ to the last node of the solid path,
where N 

′ .edge = a and N 

′ .pos = 1 . 
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Algorithm 1 Build a position heap P(t) for the string t = 

c 1 c 2 . . . c m 

. 

1: initialize position heap P(t) as a root node R , where 

R.edge = Null and R.pos = Nul l ; 
2: for each i in [ m, m − 1 , . . . , 1] do 

3: N = R ; 
4: for each j in [ i, i + 1 , . . . , m ] do 

5: find the child N′ of N, where N′ .edge = c j ; 
6: if N′ does exist then 

7: N = N′ 
8: else 

9: j = j − 1 ; 
10: break; 
11: insert a new child node N′ to the N; 
12: N ′ .ed ge = c j+1 , N′ .pos = i ; 

13: return P(t) ; 
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.1.2. PHSearch algorithm 

iven a substring s and a position heap P(t) , the PHSearch (i.e.,
lgorithm 2 ) is supposed to find all the positions in t that 

lgorithm 2 Search substring s in a position heap P(t) , where 
 = s 1 s 2 . . . s l and t = c 1 c 2 . . . c m 

. 

1: initial empty sets L 1 and L 2 ; 
2: let N be the root node of the P(t) ; 
3: for each i in [1 , 2 , . . . , l] do 

4: find the child N′ of N, where N′ .edge = s i ; 
5: if N′ does exist then 

6: if i = l then 

7: L 2 .ad d (N ′ .pos ) ; 
8: for each descendant X of N′ do 

9: L 2 .ad d (X.pos ) ; 
0: else 

1: L 1 .ad d (N ′ .pos ) ; 
2: N = N′ ; 
3: else 

4: break; 
5: for each i in L 1 do 

6: if c i c i +1 . . . c i + l−1 is not equal to s 1 s 2 . . . s l then 

7: L 1 .remove (i ) ; 
8: return L 1 ∪ L 2 ; 

re occurrences of s . The time complexity of this algorithm 

s O (| s | 2 + d s ) , where | s | is the length of the queried substring
nd d s is the number of matching positions. The details are as 
ollows: 

• The algorithm first finds the longest prefix s ′ of s that can 

be represented by a path in P(t) and then denotes this path 

as the search path. Next, the algorithm lets L 1 be the set 
of pos stored in the intermediate nodes along the search 

path and L 2 be the set of pos stored in the descendants of 
the last node of the search path (lines 3–14). In particular,
if s ′ � = s , the pos stored in the last node of the search path
is included in L 1 . Otherwise, it is included in L 2 . 

• After completing the previous step, elements in L 2 must be 
matching positions but elements in L 1 may or may not be 
matching positions. Therefore, the algorithm reviews each 
position i ∈ L 1 in the string t to filter out unmatching posi- 
tions and remove them from the L 1 . Finally, this algorithm 

returns L 1 ∪ L 2 (lines 15–17). 

Take an example with Fig. 2 . Given a substring s = bb, the
HSearch algorithm finds its longest prefix bb corresponding 
o the solid path. In this way, L 1 and L 2 are equal to { 9 } and
 5 , 1 , 4 } . Then, this algorithm reviews the string t and confirms
 = 9 ∈ L 1 is not an occurrence of s . Therefore, the position 9 is
emoved from the L 1 , and L 1 is an empty set now. Finally, this
lgorithm returns all the pos in L 1 ∪ L 2 = { 5 , 1 , 4 } . 

.2. Symmetric key encryption scheme 

 symmetric key encryption scheme (SKE) Katz and Lin- 
ell (2014) is a set of three polynomial-time algorithms 

Gen, Enc, Dec ) such that Gen takes a security parameter λ and 

eturns a secret key k ; Enc takes a key k and a message m , then
eturns a ciphertext c ; Dec takes a key k and a ciphertext c , then
eturns m if k was the key under which c was produced. In this
ork, we consider a SKE is indistinguishable under chosen 

laintext attack (IND-CPA) Katz and Lindell (2014) , which guar- 
ntees the ciphertext does not leak any information about the 
laintext even an adversary can query an encryption oracle.
e note that common private-key encryption schemes such 

s AES in counter mode satisfy this definition. 

.3. Security definition of substring-to-keyword query 

n this subsection, we follow the security definition in 

urtmola et al. (2006) to formalize the simulated-based secu- 
ity definition of substring-to-keyword query scheme by us- 
ng the following two experiments: Real A , C (λ) and I d eal A , S (λ) . In
he former, the adversary A , who represents the cloud server,
xecutes the proposed scheme with a challenger C that rep- 
esents the data user. In the latter, A also executes the pro- 
osed scheme with a simulator S who simulates the output of 
he challenger C through the leakage of the proposed scheme.
he leakage is parameterized by a leakage function collection 

 = (L O , L Q , L U ) , which describes the information leaked to
he adversary A in the outsourcing phase, query phase, and 

pdate phase respectively. If any polynomial adversary A can- 
ot distinguish the outputs between the challenger C and the 
imulator S, then we can say there is no other information 

eaked to the adversary A , i.e., the cloud server, except the in-
ormation that can be inferred from the L . More formally, 

• Real A , C (1 λ ) → b ∈ { 0 , 1 } : Given a keyword dictionary W cho-
sen by the adversary A , the challenger C outputs encrypted 

index I W 

by following the outsourcing phase of the pro- 
posed scheme. Then, A can adaptively send a polynomial 
number of query requests (or update requests) to the C,
who outputs corresponding encrypted query requests (or 
encrypted update requests). Eventually, A returns a bit b as 
the output of this experiment. 

• I d eal A , S (1 λ ) → b ∈ { 0 , 1 } : Given the leakage function L O ,
the simulator outputs simulated encrypted index I W 

. Then,
for each query request (or update request), the adversary 
A sends its leakage function L Q (or L U ) to the simulator 
S, who generates the corresponding simulated encrypted 
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query request (or encrypted update request). Eventually, A
returns a bit b as the output of this experiment. 

Definition 1. A substring-to-keyword query scheme is L -
secure against adaptive attacks if for any probabilistic poly-
nomial time adversary A , there exists an efficient simulator S
such that 

| Pr [ Real A , C (λ) → 1] − Pr [ I d eal A , S, L (λ) → 1] | ≤ negl(λ) . 

4. Our proposed scheme 

In this section, we will present our substring-of-keyword
query scheme. Before delving into the details, we first intro-
duce a modified position heap for keyword dictionaries, which
is a basic building block of our proposed scheme. 

4.1. Modified position heap for keyword dictionaries 

In order to process substring-to-keyword query efficiently, we
first design a modified position heap to index all the keywords
in a dictionary, which consists of two algorithms: i) MPHBuild
algorithm; ii) MPHSearch algorithm. 

4.1.1. MPHBuild algorithm 

Given a dictionary W = { ω 1 , ω 2 , . . . , ω d } , the MPHBuild algorithm
first transforms the dictionary W = { ω 1 , ω 2 , . . . , ω d } to a string
 W 

= ω 1 || # || ω 2 || # . . . # || ω d , where || denotes the concatenation
operation and # denotes a separate character that does not ap-
pear in any ω ∈ W . In the rest of this paper, we call this string
 W 

dictionary string . Then, this algorithm follows PHBuild algo-
rithm (i.e., Algorithm 1 ) to build an original position heap for
this dictionary string t W 

and further modifies it to a modified
position heap P(t W 

) as follows: i) For each node N, replace its
N.pos with the corresponding keyword in t W 

, called N.keyword.
ii) At the same time, remove useless paths, whose edges start-
ing with # . Fig. 3 depicts an example of building the modified
position heap P(t W 

) for a dictionary W = { ω 1 , ω 2 , ω 3 } . 

4.1.2. MPHSearch algorithm 

Given a substring s and a modified position heap P(t W 

) ,
the MPHSearch algorithm follows the PHSearch algorithm (i.e.,
Algorithm 2 ) to return all the keywords in W that include s .
There are two differences between PHSearch and MPHSearch : i)
PHSearch returns a set of positions, but MPHSearch returns a set
of keywords because all the N.pos stored in P(t W 

) is replaced
by the corresponding N.keyword. ii) PHSearch reviews each posi-
tion i ∈ L 1 in the string t to filter out unmatching positions, but
MPHSearch directly returns all the keywords in L 1 . The reason
is that the cloud server, who performs MPHSearch algorithm,
is not allowed to access to the dictionary string t W 

to filter
out unmatching keywords in L 1 . Therefore, the cloud server
returns all the keywords in L 1 and leaves the filter operation
to the data user. Fortunately, the computational cost of the fil-
ter operation, i.e., O (| s | 2 ) , is acceptable because the length of
queried substring, i.e., | s | , is relatively small in practice. 
4.2. Description of our proposed scheme 

In this subsection, we will describe our proposed privacy-
preserving substring-of-keyword query scheme, which con-
sists of five phases: i) System Initialization; ii) Data Outsourc-
ing; iii) Substring-of-keyword Query; iv) Update (Insertion);
and v) Update (Deletion). 

4.2.1. System initialization 

Given a security parameter λ, the data user first initializes a
secure pseudo-random function (PRF) H k 1 : { 0 , 1 } ∗ −→ { 0 , 1 } γ ,
where k 1 is a λ-bit random key. Then, the data user initializes
an IND-CPA secure SKE Π = (Gen, Enc, Dec ) and generates a se-
cret key k 2 = Π.Gen (1 λ ) . 

4.2.2. Data outsourcing 
Assume the data user has a file collection F = { f 1 , f 2 , . . . , f n } ,
where each f j ∈ F includes a set of keywords W j ⊆ W. The
data user generates secure indices { I W 

, I F } and a set of en-
crypted files in the following steps: 

Step 1: In order to support efficient substring-to-keyword
query, the data user uses the MPHBuild algorithm, described
in Section 4.1 , to build a modified position heap P(t W 

) for the
dictionary W. 

Step 2: For privacy, the data user encrypts P(t W 

) to a secure
index I W 

as follows: 

• For each node N in the modified position heap (except the
root), the data user uses Π.Enc k 2 to encrypt its N.keyword. 

• For each node N in the modified position heap (except
the root), the data user concatenates each edge label, i.e.,
N.edge , along the path from the root to this node, and cal-
culates the PRF output of the concatenation through H k 1 . 

Considering the example in Fig. 4 , the I W 

is encrypted from
Fig. 3 (d). For each node, its keywords are encrypted through
Π.Enc k 2 , and its edge label are transformed to a PRF output
through H k 1 . 

Step 3: In order to support efficient keyword-to-file
query, the data user utilizes the inverted index proposed in
Cash et al. (2014) to implement the index I F . This inverted in-
dex is implemented by a hash table, and each < key, value >
pair in it is the form of < ω , id > , where ω is a keyword and id
is a file identifier. 

Step 4: Finally, the data user encrypts each file f j ∈ F
through Π.Enc k 2 and sends these encrypted files to the cloud
server with secure indices { I W 

, I F } . 

4.2.3. Substring-of-keyword query 
Given a substring s = s 1 s 2 . . . s l , the data user launches
a substring-of-keyword query with the cloud server. The
substring-of-keyword query consists of two consecutive
phases: a substring-to-keyword query and a keyword-to-file
query, which are described in the following steps: 

Step 1: First, the data user generates a substring-to-
keyword query request Q ω and submits it to the cloud server.
To be more specific, the Q ω = { Q 1 , Q 2 , . . . , Q l } consists of l PRF
outputs, where 

Q i = H k 1 (s 1 || . . . || s i ) , 1 ≤ i ≤ l (1)
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Fig. 3 – An example of building a modified position heap for a dictionary W. (a) W = { ω 1 , ω 2 , ω 3 } is a dictionary, where 
ω 1 = bbab, ω 2 = bba , and ω 3 = aba . (b) To get dictionary string t W 

, concatenate all the keywords in W with character # . (c) 
Build an original position heap for t W 

. (d) For each node N, replace its N.pos with the corresponding keyword, called 

N.keyword. At the same time, remove useless paths from the P(t W 

) . 

Fig. 4 – An example of secure index I W 

, which is generated from the modified position heap P(t W 

) in Fig. 3 (d). 

Fig. 5 – An example of substring-to-keyword query, where I W 

is the secure index for dictionary string t W 

= bbab# bba # aba 
and the given substring is s = ab. 
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Step 2: After receiving the query request Q ω , the cloud 

erver follows the MPHSearch algorithm, described in 

ection 4.1 , to search encrypted keywords in secure in- 
ex I W 

and returns elements in L 1 ∪ L 2 to the data user. Fig. 5
epicts an example of substring-to-keyword query, where the 
iven substring is s = ab. In this example, the data user gen- 
rates Q ω = { H k 1 (a ) , H k 1 (a || b) } and sends it to the cloud server.
fter receiving the Q ω , the cloud server performs MPHSearch 

o get L 1 = { Π.Enc k 2 (ω 3 ) } , L 2 = { Π.Enc k 2 (ω 3 ) , Π.Enc k 2 (ω 1 ) } and
eturns L 1 ∪ L 2 to the data user. Note that, since Π.Enc is a
andomized encryption, these encrypted keywords in L 1 ∪ L 2 
re indistinguishable for the cloud server. 

Step 3: After receiving the encrypted keywords, the data 
ser first decrypts them and filters out the unmatching key- 
ords. Then, the data user chooses a queried keyword from 

he matching keywords and submits a keyword-to-file query 
o the cloud server. Since our paper just focuses on the design 

f substring-to-keyword query, we directly utilize the scheme 
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Fig. 6 – An example of inserting keyword ω = ba to I W 

, where I W 

is the secure index for dictionary string t W 

= bbab# bba # aba . 
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proposed in Cash et al. (2014) to implement our keyword-to-
file query. According to the scheme in Cash et al. (2014) , the
data user can submit efficient and privacy-preserving single
keyword queries to the cloud server based on the index I F . 

4.2.4. Update (insertion) 
In the proposed scheme, there are two types of insertion oper-
ations: insert keywords to the index I W 

and insert files to the
index I F . Since Cash et al. Cash et al. (2014) has proposed a
privacy-preserving insertion algorithm to deal with the inser-
tion for the index I F , we just need to consider the insertion for
the index I W 

. 
Given a keyword ω = c 1 c 2 . . . c z , the data user is supposed

to insert it to the index I W 

. Intuitively, assume the dictionary
is W = { ω 1 , ω 2 , . . . , ω d } and its corresponding dictionary string
is t W 

= ω 1 || # || ω 2 || # . . . # || ω d . The insertion operation will update
the index I W 

to a new version, called I W 

′ , where its correspond-
ing t W 

′ = ω|| # || t W 

. The details are described as follows: 
Step 1: The data user chooses z random values r 1 , r 2 , . . . , r z

to generate an update (insertion) request U ω = { Π.Enc k 2 (ω) ,
 (c 1 c 2 . . . c z ) , U (c 2 . . . c z ) , . . . , U (c z ) } and submits it to the cloud

server. Specifically, each U(c i . . . c z ) (1 ≤ i ≤ z ) in U ω consists of
(z − i + 3) PRF outputs, i.e., { U i , U i +1 , . . . , U z +2 } , where 

 j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

H k 1 (c i || . . . || c j ) , i f i ≤ j ≤ z 
H k 1 (c i || . . . || c j || #) , i f j = z + 1 
H k 1 (r i ) , i f j = z + 2 

(2)

Fig. 6 depicts an example of the insertion operation for key-
word ω = ba . In this example, the U ω = { Π.Enc k 2 (ω) , U(ba ) ,
 (a ) } , where U (ba ) = { H k 1 (b) , H k 1 (b|| a ) , H k 1 (b|| a || #) , H k 1 (r 1 ) } and
(a ) = { H k 1 (a ) , H k 1 (a || #) , H k 1 (r 2 ) } . 

Step 2: After receiving the update (insertion) request U ω , for
each U(c i . . . c z ) ( 1 ≤ i ≤ z ) in it, the cloud server first finds its
longest prefix U i U i +1 . . . U h (1 ≤ h < z + 2) that is already rep-
resented by a path in I W 

and denotes this path as insertion
path. Then the cloud server appends a new leaf child N 

′ to
the last node of the insertion path, where N 

′ .edge = U h +1 and
N 

′ .keyword = Π.Enc k 2 (ω) . Note that, in practice, the h can not
equal to z + 2 because U z +2 = H k 1 (r i ) is a random number. As
shown in Fig. 6 , the solid edges reflect the insertion paths for
the U(ba ) and U(a ) . 

4.2.5. Update (deletion) 
In the proposed scheme, there are two types of deletion opera-
tions: delete substrings from the index I F and delete keywords
from the index I W 

. Since Cash et al. Cash et al. (2014) has pro-
posed a privacy-preserving deletion algorithm for the index
I F , we just need to consider the deletion for the index I W 

. 
We implement this deletion operation by maintaining a

revocation list I W r , which is also an encrypted modified po-
sition heap, in the cloud server. Specifically, in the data out-
sourcing phase, the data user builds a modified position heap
I W r for an empty dictionary W r = {} and sends the I W r to
the cloud server with { I W 

, I F } . Then, to delete a keyword from
the cloud server, the data user just follows the update (in-
sertion) method in 4.2.4 to insert the keyword to I W r . During
a substring-to-keyword query, after receiveing a substring-to-
keyword query request, the cloud server performs search op-
erations over I W 

and I W r separately, and returns two result sets
to the data user. Finally, the data user decrypts the two result
sets and calculates the difference between them to obtain the
correct keywords. 

Correctness. The correctness of our proposed is quite
straightforward. The only issue is the collision among the
edges’ PRF outputs in I W 

. Since the domain size of PRF H k 1 is
2 γ , assuming that the number of nodes in I W 

is m , the probabil-
ity of collision is O ( 

[ m 

2 

]
/ 2 γ ) = O (m 

2 / 2 γ ) . So we need to choose
γ = λ + 2 log(m ) such that O (m 

2 / 2 γ ) = O (1 / 2 λ ) is negligible over
the security parameter λ. 

5. Security analysis 

In this paper, the proposed substring-of-keyword query
scheme consists of two query schemes: a substring-to-
keyword query scheme and a keyword-to-file query scheme.
Since the security analysis in Cash et al. (2014) has shown
that the keyword-to-file query scheme is secure, we mainly fo-
cus on the security analysis of the substring-to-keyword query
scheme in this section. 
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.1. Leakage function collection 

he leakage function collection L consists of three leakage 
unctions: L O , L Q , and L U . Before defining them, we first give 
ome definitions for the leakage of this scheme. 

efinition 2. (Query Path Pattern) Given the index I W 

, which 

ontains a set of encrypted nodes { n 1 , n 2 , . . . , n m 

} , and a query
equest Q ω , the Query Path Pat t ern reveals a set of identifiers 
f nodes in I W 

that are reached by the Q ω , i.e., nodes in the
earch path. Note that, in the proposed scheme the Query 
 ath P attern includes the Access Pattern (i.e., search result) and 

earch Pat t ern (i.e., which queries have the same queried sub- 
tring). 

efinition 3. (Insertion Path Pattern) Given the index I W 

,
hich contains a set of encrypted nodes { n 1 , n 2 , . . . , n m 

} , and
n update (insertion) request U ω , the Insertion P ath P attern re- 
eals the set of identifiers of nodes in I W 

that are reached by 
he U ω , i.e., nodes in the insertion path. 

efinition 4. (Deletion Path Pattern) The deletion method is 
mplemented by a revocation list, which means the update 
deletion) request is exactly the same as the update (inser- 
ion) request. Therefore, given the revocation list I W r , which 

ontains a set of encrypted nodes { n 1 , n 2 , . . . , n m 

} , and an up-
ate (deletion) request U ω , the Del et ion Pat h Pat t ern reveals the
et of identifiers of nodes in I W r that are reached by the U ω . 

Now we define the leakage functions to capture the infor- 
ation leakage in different phases. 

• Outsourcing Phase: Given the index I W 

, which contains a 
set of encrypted nodes { n 1 , n 2 , . . . , n m 

} . The leakage L O con-
sists of the following information: 
• m : the size of the dictionary string t W 

. 
• Γ = { (id 1 , C id 1 ) , . . . , (id m 

, C id m ) } : the structure of index I W 

,
where id i (1 ≤ i ≤ m ) denotes the identifiers of encrypted 

node n i and C id i 
(1 ≤ i ≤ m ) denotes all the identifiers of 

id i ’s children. 
• Query Phase: Given the index I W 

and a substring-to- 
keyword query request Q ω , the leakage L Q is Query Path 
Pat t ern . 

• Update Phase: Given the index I W 

, revocation list I W r , and 

an update request U ω , if update operation is insertion / 
deletion, the leakage L U is Insertion Path Pattern / Deletion 
P ath P attern . 

.2. Security proof 

e now prove the security of the substring-to-keyword 

uery scheme based on the leakage function collection L = 

L O , L Q , L U } . Intuitively, we first define a simulator S based on
he leakage function collection L and then analyze the indis- 
inguishability between the outputs of the S in the ideal world 

nd the challenger C (i.e., the data user) in the real world. Fi- 
ally, we conclude that the proposed substring-to-keyword 

uery scheme does not reveal any information beyond the 
eakage function collection L to the server. The details are as 
ollows. 
heorem 1. If the H is a secure pseudo-random function (PRF) and 
is an IND-CPA secure symmetric key encryption scheme (SKE),

hen our proposed scheme is L -adaptively-secure. 

roof. Based on the leakage function collection L , we can 

uild a simulator S as follows: 

• Data Outsourcing: given the leakage function L O = { m, Γ } ,
the simulator S is supposed to generate a simulated I W 

(i.e.,
an encrypted modified position heap). Specifically, the sim- 
ulator S first generates m empty nodes and identifies each 

node a unique identifier from { id 1 , . . . , id m 

} . Then the sim-
ulator S constructs these nodes to a tree (i.e., I W 

) based on 

Γ , which means the I W 

has the same tree structure as I W 

.
Next, for each node in the I W 

, the simulator S chooses a 
random number H from the domain of H as the PRF output 
of its edge and a random number Π.Enc from the domain of 
Π.Enc as its encrypted keyword. Since the output of H and 

Π.Enc are pseudo-random, the adversary A cannot distin- 
guish between the I W 

in the ideal world and the I W 

in the 
real world. 

• Substring-to-keyword Query: given the leakage function 

L Q for a substring-to-keyword query request Q ω , the sim- 
ulator S is supposed to generate a simulated encrypted 

substring-to-keyword query request Q ω . Note that, in this 
phase, the simulator S not only has L Q but also L O and I W 

from the data outsourcing phase. Therefore, the simulator 
S can follow the Query Path Pat t ern in L Q to find the search 

path in I W 

and output all the H stored in the search path 

as the Q ω . Since the output of H is pseudo-random, the ad- 
versary A cannot distinguish between the elements in Q ω 

and Q ω . At the same time, after receiving the Q ω , the adver- 
sary A can use it to find matching encrypted keywords in 

I W 

. Since these matching encrypted keywords in I W 

is en- 
crypted through Π.Enc , the adversary A cannot distinguish 

them from the matching encrypted keywords in I W 

, which 

means the adversary A cannot distinguish between Q ω in 

the ideal world and Q ω in the real world. 
• Update: given the leakage function L U for an update (in- 

sertion / deletion) request U ω , the simulator S is supposed 

to generate a simulated encrypted update request U ω . Note 
that, in this phase, the simulator S not only has L U but also 
L O and I W 

/ I W r from the data outsourcing phase. There- 
fore, the simulator S can follow the Insertion P ath P attern / 
Del et ion Pat h Pat t ern in L U to find the insertion paths in I W 

/ I W r and output all the H stored in these insertion paths 
as the U ω . Since the output of H is pseudo-random, the ad- 
versary A cannot distinguish between U ω in the ideal world 

and U ω in the real world. 

In summary, as the adversary A cannot distinguish be- 
ween the outputs from the simulator S and the challenger 
, we can conclude that our proposed substring-to-keyword 

uery scheme is L -adaptively-secure. �

. Performance evaluation 

n this section, we evaluate the performance of our proposed 

cheme from both theoretical and experimental perspectives.
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Table 1 – Comparison between ours and existing schemes. 

Scheme Index Space Query Time Dynamism 

Chase and Shen (2015) O (m ) O (| s | + d s ) static 
Leontiadis and Li (2018) O (m ) O (| s | + d s ) static 
Hahn et al. (2018) O (m ) O (| s | · d kg ) dynamic 

Moataz et al. (2018) O (m ) O (m ) static 
Mainardi et al. (2019) O (| �| · m ) O (| s | + d s ) static 
Our solution O (m ) O (| s | + d s ) dynamic 

m is the size of dataset, | s | is the size of queried substring s , d s is the number of matching positions for s , d kg is the average number of matching 
positions for a k-gram of s , and | �| is the number of distinct characters in dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 – The length distribution of a total of 40,205 distinct 
keywords in W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Theoretical analysis 

We perform a theoretical comparison of our proposed
substring-to-keyword scheme with existing schemes (cf.
Table 1 ) from three aspects: index space, query time, and
dynamism. From Table 1 , we can see that the schemes in
Chase and Shen (2015) and Leontiadis and Li (2018) have the
same index space (i.e., O (m ) ) and query time (i.e, O (| s | + d s ) ).
However, in practice, Chase and Shen (2015) will consume
more index space than Leontiadis and Li (2018) due to its suf-
fix tree index, which just stores position data in leaf nodes
and does not utilize the space of inner nodes effectively. In
fact, the number of nodes in the suffix tree can be up to 2 m ,
where m is the size of the dataset. In contrast, Leontiadis and
Li (2018) utilizes Burrows-Wheeler Transformation (BWT) to
build a suffix array index to support substring query, which
has better storage-efficiency than the suffix tree at the cost of
worse query-efficiency. 

Later, based on the scheme in Leontiadis and Li (2018) ,
Mainardi et al. (2019) uses Private Information Retrieval
(PIR) technique to protect the access pattern, which causes
high index space and query time. In addition to suffix
tree and suffix array, there are other auxiliary data struc-
tures Hahn et al. (2018) ; Moataz et al. (2018) can be used to
support substring query. However, their query time is unac-
ceptable in practice. 

Compared with these existing schemes, our proposed
substring-to-keyword scheme can achieve high storage-
efficiency and query-efficiency at the same time. In specific,
our scheme can achieve O (m ) complexity for index space
and O (| s | + d s ) complexity for query time, which are the
same as Chase and Shen (2015) ; Leontiadis and Li (2018) and
better than Hahn et al. (2018) ; Mainardi et al. (2019) ;
Moataz et al. (2018) . In addition, our proposed scheme can
support dynamic datasets, which cannot be supported by
Chase and Shen (2015) ; Leontiadis and Li (2018) . Further,
due to the use of position heap technique, which is storage-
efficient than the suffix tree and query-efficient than the suf-
fix array, our proposed scheme consumes less index space
than Chase and Shen (2015) and less query time than
Leontiadis and Li (2018) in practice, which will be shown in
the next subsection. 

6.2. Experimental analysis 

In this subsection, we evaluate the computational cost
and storage overhead of the proposed substring-to-keyword
scheme in terms of three phases: local data outsourcing,
substring-to-keyword query, and update. Specifically, we im-
plemented the proposed scheme in C++ (our code is open
source Yin (2019) ) and conducted experiments on a 64-bit
machine with an Intel Core i5-8400 CPU at 2.8GHZ and 2GB
RAM, running CentOS 6.6. We utilized the OpenSSL library
for the entailed cryptographic operations, where the H and
Π are instantiated using HMAC-SHA-256 and AES-512-CBC
in the OpenSSL library, respectively. Note that, we imple-
mented the data user and the cloud server on the same
machine, which means there is no network delay between
them. The underlying dataset (i.e., the dictionary W) in our
experiment was extracted from 29,378 articles from Wikivoy-
age wikivoyage (0000) , and it contains 40,205 distinct keywords
in total. The length distribution of the keywords in W can be
found in Fig. 7 . 

In order to show the efficiency of our proposed substring-
to-keyword scheme, we compare it with the schemes in
Chase and Shen (2015) ; Leontiadis and Li (2018) . Note that,
in our experiment, we also use the schemes in Chase and
Shen (2015) ; Leontiadis and Li (2018) to support substring
query on the dictionary string t W 

, which is transformed from
the dictionary W by the method described in Fig. 3 (a-b). 

6.2.1. Data outsourcing 
In this part, we consider the storage overhead and computa-
tional cost of data outsourcing phase. 
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Fig. 8 – The storage overhead of the data outsourcing 
versus the size of dictionary d. 

Fig. 9 – The data outsourcing runtime versus the size of 
dictionary d. 
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Fig. 10 – Substring-to-keyword query runtime versus the 
size of dictionary d, where the number of matching 
keywords d s is 5. 

Fig. 11 – Substring-to-keyword query runtime versus the 
number of matching keywords d s , where d = 40000 . 
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In general, given a dictionary string, our solution generates 
n encrypted position heap, Chase and Shen (2015) generates 
n encrypted suffix tree, and Leontiadis and Li (2018) gener- 
tes an encrypted suffix array as the index, respectively. Fig. 8 
nd Fig. 9 (the y-axis is log scale) depict the storage overhead 

nd the runtime versus the size of dictionary (i.e., d), where d
aries from 5000 to 40,000 keywords. The figures show that 
hase and Shen (2015) consumes much more storage over- 
ead and computation cost than Leontiadis and Li (2018) and 

ur solution in data outsourcing phase. 

.2.2. Substring-to-keyword query 
n this part, we randomly choose queried substrings from the 
ictionary W and calculate their average queried time. Since 
he computational cost of substring-to-keyword query is lim- 
ted by two factors: the size of dictionary (i.e., d) and the num- 
er of matching keywords (i.e., d s ), we analyze them separately 

n the following. 
Fig. 10 (the y-axis is log scale) depicts the computational 

ost of the substring-to-keyword query versus the size of dic- 
ionary (i.e., d). This figure shows that the computational cost 
f our solution and Chase and Shen (2015) are not affected by d
hen the number of matching keywords d s is fixed. However,

he computational cost of Leontiadis and Li (2018) increases 
inear with d even if d s is fixed. 

Fig. 11 (the y-axis is log scale) plots the runtime of the 
ubstring-to-keyword query versus the number of match- 
ng keywords d s , in which d is fixed to 40000. From this fig-
re, we can see that the computational cost of these three 
chemes are not affected too much by d s . Meanwhile, our solu- 
ion and Chase and Shen (2015) are significantly quicker than 

eontiadis and Li (2018) . For example, when d s = 20 , the com-
utational cost of our solution and Chase and Shen (2015) are 
oth about 0.004 ms, which is just about 1 / 60 compared to
eontiadis and Li (2018) . 

.2.3. Update 
n this part, we consider the update (insertion / deletion) 
hase. Since there is no secure update method in Chase and 

hen (2015) ; Leontiadis and Li (2018) , we only test the update
erformance of our solution. Since the deletion operation in 
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Fig. 12 – Insertion runtime versus the length of inserted 

keyword, where the size of original dictionary d is 5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

our solution is the same as the insertion operation, we just
evaluate the computational cost of the insertion operation. 

Fig. 12 plots the computational cost of the insertion versus
the length of inserted keyword, in which the size of original
dictionary d is fixed to 5000. From this figure, we can see that
the computational cost of our solution increases linearly with
the length of inserted keyword. 

7. Related work 

A searchable encryption scheme can be realized with optimal
security via powerful cryptographic tools, such as Fully Ho-
momorphic Encryption (FHE) Gentry (2009, 2010) and Obliv-
ious Random Access Memory (ORAM) Goldreich and Ostro-
vsky (1996) ; Ostrovsky (1990) . However, these tools are extraor-
dinarily impractical. Another set of works utilize property-
preserving encryption (PPE) Bellare et al. (2007) ; Boldyreva
et al. (2009, 2011) ; Yang et al. (2018) to achieve search-
able encryption, which encrypts messages in a way that in-
evitably leaks certain properties of the underlying message.
For balancing the leakage and efficiency, many studies fo-
cus on Searchable Symmetric Encryption (SSE). Song et al.
Song et al. (2000) first used the symmetric encryption to fa-
cilitate keyword query over the encrypted data. Then, Curt-
mola et al. Curtmola et al. (2006) gave a formal definition of
SSE, and proposed an efficient SSE scheme. However, their
scheme cannot support update(insertion/deletion) operation.
Later, Kamara et al. Kamara et al. (2012) proposed the first
dynamic SSE scheme, which used a deletion array and a ho-
momorphic encrypted pointer technique to securely update
files. Unfortunately, due to the use of fully homomorphic en-
cryption, the update efficiency is very low. In a more recent
paper Cash et al. (2014) , Cash et al. described a simple dy-
namic inverted index based on Curtmola et al. (2006) , which
utilizes the data unlinkability of hash table to achieve se-
cure insertion. Meanwhile, to prevent the file-injection attacks
Zhang et al. (2016) , many works Bost (2016) ; Kim et al. (2017) ;
Zuo et al. (2018, 2019) focused on the forward security, which
ensures that newly updated keywords cannot be related to
previous queried results. 
Nevertheless, these above works only can support the ex-
act keyword query. If the queried keyword does not match a
preset keyword, the query will fail. Fortunately, fuzzy query
can deal with this problem as it can tolerate minor typos
and formatting inconsistencies. Li et al. Li et al. (2010) first
proposed a fuzzy query scheme, which used an edit dis-
tance with a wildcard-based technique to construct fuzzy
keyword sets. For instance, the set of CAT with 1 edit dis-
tance is { CAT, ∗CAT, ∗AT, C ∗ AT, C ∗ T, CA ∗ T, CA ∗, CAT ∗} . Then,
Kuzu et al. Kuzu et al. (2012) used LSH (Local Sensitive Hash)
and Bloom filter to construct a similarity query scheme. Be-
cause an honest-but-curious server may only return a frac-
tion of the results, Wang et al. Wang et al. (2013) proposed a
verifiable fuzzy query scheme that not only supports fuzzy
query service, but also provides proof to verify whether the
server returns all the queried results. However, these fuzzy
query schemes only support single fuzzy keyword query and
address problems of minor typos and formatting inconsis-
tency, which can not be directly used to achieve substring-of-
keyword query. 

In Chase and Shen (2015) , Melissa et al. designed a SSE
scheme based on the suffix tree to support substring query. Al-
though this scheme can be used to implement the substring-
of-keyword query and allows for substring query in O (| s | + d s )
time, its storage cost O (m ) has a big constant factor. The
reason is that suffix tree only stores position data in leaf
nodes and does not utilize the space of inner nodes effec-
tively. This leads the number of nodes in suffix tree can
be up to 2 m , where m is the size of the dataset. In order
to reduce the storage cost as much as possible, Leontiadis
et al. Leontiadis and Li (2018) leveraged Burrows Wheeler
Transform (BWT) to build an auxiliary data structure called
suffix array, which can achieve storage cost O (m ) with a lower
constant factor. However, its query time is relatively large.
Later, Mainardi et al. Mainardi et al. (2019) optimizes the query
algorithm in Leontiadis and Li (2018) to achieve O (| s | + d s ) at
the cost of higher index space, i.e., O (| �| · m ) , where | �| is the
number of distinct characters in the dictionary. Although au-
thors in this article considered datasets with small | �| (e.g.,
DNA dataset), the | �| can be large in practice. In addition to
suffix tree and suffix array, there are other auxiliary data struc-
tures can be used to support substring query. In 2018, Flo-
rian et al. Hahn et al. (2018) designed an index based on k-
grams. When a user needs to perform a substring query, the
cloud performs a conjunctive keyword query for all the k-
grams of the queried substring. However, its query time is rel-
atively large due to the computational cost of intersection op-
erations in the conjunctive keyword query. In the same year,
Tarik et al. Moataz et al. (2018) proposed a new substring query
scheme based on the idea of letter orthogonalization, which
allows testing of string membership by performing efficient
inner product. Again, the disadvantage of this scheme comes
its O (m ) query time. 

8. Conclusion 

In this paper, we have proposed an efficient and privacy-
preserving substring-of-keyword query scheme over cloud.
Specifically, based on the position heap technique, we first
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esigned a tree-based index to support substring-to-keyword 

uery and then applied a PRF and a SKE to protect its privacy.
fter that, we proposed a novel substring-of-keyword query 
cheme, which contains two consecutive phases: a substring- 
o-keyword query that queries the keywords matching a given 

ubstring, and a keyword-to-file query that queries the files 
atching a keyword that the user is really interested. The pro- 

osed scheme is very suitable for many critical applications 
n practice such as Google search. Detailed security analysis 
nd performance evaluation show that our proposed scheme 
s indeed privacy-preserving and efficient. In our future work,
e will take more security properties into consideration, e.g.,
chieving forward and backward security. 
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